Abstract
Purpose
To evaluate the performance of texture-based biomarkers by radiomic analysis using magnetic resonance imaging (MRI) of patients with sacroiliitis secondary to spondyloarthritis (SpA). Relevance: The determination of sacroiliac joints inflammatory activity supports the drug management in these diseases.
Methods
Sacroiliac joints (SIJ) MRI examinations of 47 patients were evaluated. Thirty-seven patients had SpA diagnoses (27 axial SpA and ten peripheral SpA) which was established previously after clinical and laboratory follow-up. To perform the analysis, the SIJ MRI was first segmented and warped. Second, radiomics biomarkers were extracted from the warped MRI images for associative analysis with sacroiliitis and the SpA subtypes. Finally, statistical and machine learning methods were applied to assess the associations of the radiomics texture-based biomarkers with clinical outcomes.
Results
All diagnostic performances obtained with individual or combined biomarkers reached areas under the receiver operating characteristic curves ≥ 0.80 regarding SpA related sacroiliitis and and SpA subtypes classification. Radiomics texture-based analysis showed significant differences between the positive and negative SpA groups and differentiated the axial and peripheral subtypes (P < 0.001). In addition, the radiomics analysis was also able to correctly identify the disease even in the absence of active inflammation.
Conclusion
We concluded that the application of the radiomic approach constitutes a potential noninvasive tool to aid the diagnosis of sacroiliitis and for SpA subclassifications based on MRI of sacroiliac joints.
Similar content being viewed by others
References
Malaviya AN, Rawat R, Agrawal N, Patil NS (2017) The nonradiographic axial spondyloarthritis, the radiographic axial spondyloarthritis, and ankylosing spondylitis: the Tangled Skein of rheumatology. Int J Rheumatol 2017:1824794. https://doi.org/10.1155/2017/1824794
Sieper J, Rudwaleit M, Baraliakos X, Brandt J, Braun J, Burgos-Vargas R, Dougados M, Hermann KG, Landewé R, Maksymowych W, van der Heidje D (2009) The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis 68(Suppl 2):1–44
Macfarlane GJ, Shim J, Jones GT, Walker-Bone K, Pathan E, Dean LE (2019) Identifying persons with axial Spondyloarthritis at risk of poor work outcome: results from the British Society for Rheumatology biologics register. J Rheumatol 46:145–152
Garrido-Cumbrera M, Delgado-Domínguez CJ, Gálvez-Ruiz D, Mur CB, Navarro-Compán V (2019) The impact of axial spondyloarthritis on mental health: results from the atlas. J Rheumatol 46:1284–1289
Kang Y, Hong SH, Kim JY, Yoo HJ, Choi JY, Yi M, Kang HS (2015) Unilateral sacroiliitis: differential diagnosis between infectious sacroiliitis and spondyloarthritis based on MRI findings. AJR Am J Roentgenol 205:1048–1055
Sieper J, Poddubnyy D (2017) Axial spondyloarthritis. Lancet 390:73–84
Giardino A, Gupta S, Olson E, Sepulveda K, Lenchik L, Ivanidze J, Rakow-Penner R, Patel MJ, Subramaniam RM, Ganesham D (2017) Role of imaging in the era of precision medicine. Acad Radiol 24:639–649
Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CML, Gillies R, Boellard R, Dekker A, Aerts HJ (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446
Gillies RJ, Kinahan PE, Hricak H (2015) Radiomics: images are more than pictures, they are data. Radiology 278:563–577
Larue RT, Defraene G, De Ruysscher D, Lambin P, Van Elmpt W (2017) Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol 90:20160665
Faleiros MC, Junior JR, Jens EZ, Dalto VF, Nogueira-Barbosa MH, de Azevedo-Marques PM (2017) Lecture notes in computational vision and biomechanics. Pattern recognition of inflammatory sacroiliitis in magnetic resonance imaging. In: European congress on computational methods in applied sciences and engineering. Springer, Cham, pp 639–644
Rudwaleit MV, Van Der Heijde D, Landewé R, Akkoc N, Brandt J, Chou CT, Dougados M, Huang F, Gu J, Kirazili Y, van den Bosch F, Olivieri I, Roussou E, Scarpato S, Sørensen IJ, Valle-Oñate R, Weber U, Wei J, Sieper J (2011) The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann Rheum Dis 70:25–31
Lubner MG, Smith AD, Sandrasegaran K, Sahani DV, Pickhardt PJ (2017) CT texture analysis: definitions, applications, biologic correlates, and challenges. RadioGraphics 37:1483–1503
Ferreira-Junior JR, Azevedo-Marques PM, Oliveira MC (2017) Selecting relevant 3D image features of margin sharpness and texture for lung nodule retrieval. Int J Comput Assist Radiol Surg 12(3):509–517
Tenorio APM, Faleiros MC, Ferreira-Junior JR, Dalto VF, Assad RL, Yoshida H, Nogueira-Barbosa MH, Azevedo-Marques PM (2018) Radiomics association of MRI texture features with spondyloarthritis and sacroiliitis. In: International congress and exhibition on computer-assisted radiology and surgery, pp S258–S259
Kolossváry M, Miklós K, Béla M, Maurovich-Horvat P (2018) Cardiac computed tomography radiomics: a comprehensive review on radiomic techniques. J Thorac Imaging 33(1):26–34
Aerts H, Velazquez E, Leijenaar R, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen M, Leemans C, Dekker A, Quackenbush J, Gillies R, Lambin P (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006
Faleiros MC, Zavala EJR, Ferreira-Junior JR, Dalto VF, Assad RL, Louzada-Junior P, Nogueira-Barbosa MH, Azevedo-Marques PM (2017) Computer-aided classification of inflammatory sacroiliitis in magnetic resonance imaging. In: International congress and exhibition on computer-assisted radiology and surgery, pp S154–S155
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671
Lux M, Marques O (2013) Visual information retrieval using java and lire. In: Synthesis lectures on information concepts, retrieval, and services, vol 5, pp 1–12
Yip S, Liu Y, Parmar C, Li Q, Liu S, Qu F, Ye Z, Gillies R, Aerts H (2017) Associations between radiologist-defined semantic and automatically computed radiomic features in non-small cell lung cancer. Sci Rep 7:3519
Frighetto-Pereira L, Rangayyan RM, Metzner GA, de Azevedo-Marques PM, Nogueira-Barbosa MH (2016) Shape, texture and statistical features for classification of benign and malignant vertebral compression fractures in magnetic resonance images. Comput Biol Med 73:147–156
Ferreira-Junior JR, Koenigkam-Santos M, Cipriano FE, Fabro AT, de Azevedo-Marques PM (2018) Radiomics-based features for pattern recognition of lung cancer histopathology and metastases. Comput Methods Programs Biomed 159:23–30
Ferreira-Junior JR, Koenigkam-Santos M, Tenorio APM, Faleiros MC, Cipriano FEG, Fabro AT, Nappi J, Yoshida H, Azevedo-Marques PM (2020) CT-based radiomics for prediction of histologic subtype and metastatic disease in primary malignant lung neoplasms. Int J Comput Assist Radiol Surg 15:163–172
Matias-Júnior I, Medeiros P, Freita RL, Vicente-César H, Junior JRF, Machado HR, Menezes-Reis R (2019) Effective parameters for gait analysis in experimental models for evaluating peripheral nerve injuries in rats. Neurospine 16(2):305
Witten IH, Frank E, Hall MA, Pal CJ (2016) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, Los Altos
Paramarta JE, Baeten D (2013) Spondyloarthritis: from unifying concepts to improved treatment. Rheumatology 53:1547–1559
Kohem CL, Bortoluzzo AB, Gonçalves CR, da Silva JA, Ximenes AC, Bértolo MB, Ribeiro S, Keiserman M, Menin R, Skare T, Carneiro S, Azevedo V, Vieira W, Albuquerque E, Bianchi W, Bonfiglioli R, Campanholo C, Carvalho H, Costa I, Duarte A, Leite N, Lima S, Meirelles E, Pereira I, Pinheiro M, Polito E, Resende G, Rocha F, Santiago M, Sauma MR, Valim V, Sampaio-Barros PD (2014) Perfil do uso de drogas modificadoras de doença no Registro Brasileiro de Espondiloartrites. Rev Bras Reumatol 54:33–37
Rudwaleit M, Haibel H, Baraliakos X, Listing J, Märker-Hermann E, Zeidler H, Braun J, Sieper J (2009) The early disease stage in axial spondylarthritis: results from the German Spondyloarthritis Inception Cohort. Arthritis Rheumatol 60:717–727
Mease PJ, Palmer JB, Liu M, Kavanaugh A, Pandurengan R, Ritchlin CT, Karki C, Greenberg JD (2018) Influence of axial involvement on clinical characteristics of psoriatic arthritis: analysis from the Corrona Psoriatic Arthritis/Spondyloarthritis Registry. J Rheumatol 45:1389–1396
Faleiros MC, Nogueira-Barbosa MH, Dalto VF, Júnior JRF, Tenório APM, Luppino-Assad R, Louzada-Junior P, Rangayyan RM, DeAzevedo-Marques PM (2020) Machine learning techniques for computer-aided classification of active inflammatory sacroiliitis in magnetic resonance imaging. Adv Rheumatol. https://doi.org/10.1186/s42358-020-00126-8
Santos MK, Junior JRF, Wada DT, Tenorio APM, Nogueira-Barbosa MH, Azevedo-Marques PM (2019) Artificial intelligence, machine learning, computer-aided diagnosis, and radiomics: advances in imaging towards to precision medicine. Radiol Bras 52(6):387–396
Faleiros, MC, Ferreira-Junior JR, Tenorio APM, Dalto VF, Assad RL, Nogueira-Barbosa MH, Azevedo-Marques PM (2018) Features selection analysis to quantify sacroiliitis in magnetic resonance imaging. In: International congress and exhibition on computer assisted radiology and surgery, pp S106–S107
Rudwaleit M, Jurik AG, Hermann KA, Landewé R, van der Heijde D, Baraliakos X, Marzo-Ortega H, Østergaard M, Braun J, Sieper J (2009) Defining active sacroiliitis on magnetic resonance imaging (MRI) for classification of axial spondyloarthritis: a consensual approach by the ASAS/OMERACT MRI group. Ann Rheum Dis 68:1520–1527
Dalto VF, Assad RL, Crema MD, Louzada-Junior P, Nogueira-Barbosa MH (2017) MRI assessment of bone marrow oedema in the sacroiliac joints of patients with spondyloarthritis: is the SPAIR T2w technique comparable to STIR? Eur Radiol 27:3669–3676
Greese J, Diekhoff T, Sieper J, Schwenke C, Makowski MR, Poddubnyy D, Hamm B, Hermann KGA (2019) Detection of sacroiliitis by short-tau inversion recovery and T2-weighted turbo spin echo sequences: results from the SIMACT Study. J Rheumatol 46:376–383
Romand X, Douillard C, Baillet A (2017) Biomarkers for outcomes of spondyloarthritis. Joint Bone Spine 84:385–387
Funding
This study was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [Grants Nos. 2016/17078-0, 2014/50889-7].
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Comitê de Ética em Pesquisa do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Reference No. 2.356.447).
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Tenório, A.P.M., Faleiros, M.C., Junior, J.R.F. et al. A study of MRI-based radiomics biomarkers for sacroiliitis and spondyloarthritis. Int J CARS 15, 1737–1748 (2020). https://doi.org/10.1007/s11548-020-02219-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11548-020-02219-7