Skip to main content
Log in

Spectral augmentation for heart chambers segmentation on conventional contrasted and unenhanced CT scans: an in-depth study

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Recently, machine learning has outperformed established tools for automated segmentation in medical imaging. However, segmentation of cardiac chambers still proves challenging due to the variety of contrast agent injection protocols used in clinical practice, inducing disparities of contrast between cavities. Hence, training a generalist network requires large training datasets representative of these protocols. Furthermore, segmentation on unenhanced CT scans is further hindered by the challenge of obtaining ground truths from these images. Newly available spectral CT scanners allow innovative image reconstructions such as virtual non-contrast (VNC) imaging, mimicking non-contrasted conventional CT studies from a contrasted scan. Recent publications have demonstrated that networks can be trained using VNC to segment contrasted and unenhanced conventional CT scans to reduce annotated data requirements and the need for annotations on unenhanced scans. We propose an extensive evaluation of this statement.

Method

We undertake multiple trainings of a 3D multi-label heart segmentation network with (HU-VNC) and without (HUonly) VNC as augmentation, using decreasing training dataset sizes (114, 76, 57, 38, 29, 19 patients). At each step, both networks are tested on a multi-vendor, multi-centric dataset of 122 patients, including different protocols: pulmonary embolism (PE), chest-abdomen-pelvis (CAP), heart CT angiography (CTA) and true non-contrast scans (TNC). An in-depth comparison of resulting Dice coefficients and distance metrics is performed for the networks trained on the largest dataset.

Results

HU-VNC-trained on 57 patients significantly outperforms HUonly trained on 114 regarding CAP and TNC scans (mean Dice coefficients of 0.881/0.835 and 0.882/0.416, respectively). When trained on the largest dataset, significant improvements in all labels are noted for TNC and CAP scans (mean Dice coefficient of 0.882/0.416 and 0.891/0.835, respectively).

Conclusion

Adding VNC images as training augmentation allows the network to perform on unenhanced scans and improves segmentations on other imaging protocols, while using a reduced training dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Code availability

Philips IntelliSpace Portal 11.1 and 3D-Slicer 4.10.2 were used to create segmentation ground truths.

References

  1. Chen C, Qin C, Qiu H, Tarroni G, Duan J, Bai W, Rueckert D (2020) Deep learning for cardiac image segmentation: a review. Front Cardiovasc Med 7:25. https://doi.org/10.3389/fcvm.2020.00025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhuang X, Li L, Payer C, Štern D, Urschler M, Heinrich MP, Oster J, Wang C, Smedby Ö, Bian C, Yang X, Heng P-A, Mortazi A, Bagci U, Yang G, Sun C, Galisot G, Ramel J-Y, Brouard T, Tong Q, Si W, Liao X, Zeng G, Shi Z, Zheng G, Wang C, MacGillivray T, Newby D, Rhode K, Ourselin S, Mohiaddin R, Keegan J, Firmin D, Yang G (2019) Evaluation of algorithms for multi-modality whole heart segmentation: an open-access grand challenge. Med Image Anal 58:101537. https://doi.org/10.1016/j.media.2019.101537

    Article  PubMed  PubMed Central  Google Scholar 

  3. Singh G, Al’Aref SJ, Van Assen M, Kim TS, van Rosendael A, Kolli KK, Dwivedi A, Maliakal G, Pandey M, Wang J, Do V, Gummalla M, De Cecco CN, Min JK (2018) Machine learning in cardiac CT: basic concepts and contemporary data. J Cardiovasc Comput Tomogr 12:192–201. https://doi.org/10.1016/j.jcct.2018.04.010

    Article  PubMed  Google Scholar 

  4. Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP (2018) Machine learning in cardiovascular medicine: are we there yet? Heart 104:1156–1164. https://doi.org/10.1136/heartjnl-2017-311198

    Article  PubMed  Google Scholar 

  5. Kurkure U, Avila-Montes OC, Kakadiaris IA (2008) Automated segmentation of thoracic aorta in non-contrast CT images. In: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. pp 29–32

  6. Kurugol S, San Jose Estepar R, Ross J, Washko GR (2012) Aorta segmentation with a 3D level set approach and quantification of aortic calcifications in non-contrast chest CT. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2343–2346

  7. Xie Y, Padgett J, Biancardi AM, Reeves AP (2014) Automated aorta segmentation in low-dose chest CT images. Int J Comput Assist Radiol Surg 9:211–219. https://doi.org/10.1007/s11548-013-0924-5

    Article  PubMed  Google Scholar 

  8. Sedghi Gamechi Z, Bons LR, Giordano M, Bos D, Budde RPJ, Kofoed KF, Pedersen JH, Roos-Hesselink JW, de Bruijne M (2019) Automated 3D segmentation and diameter measurement of the thoracic aorta on non-contrast enhanced CT. Eur Radiol 29:4613–4623. https://doi.org/10.1007/s00330-018-5931-z

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang C, Smedby Ö (2014) Automatic multi-organ segmentation in non-enhanced ct datasets using hierarchical shape priors. In: 2014 22nd international conference on pattern recognition, pp. 3327–3332

  10. Dey D, Ramesh A, Slomka PJ, Nakazato R, Cheng VY, Germano G, Berman DS (2010) Automated algorithm for atlas-based segmentation of the heart and pericardium from non-contrast CT. In: Proc. SPIE—Int. Soc. Opt. Eng., vol. 7623, p. 762337. https://doi.org/10.1117/12.844810

  11. Luo Y, Xu Y, Liao Z, Gomez D, Wang J, Jiang W, Zhou R, Williamson R, Court LE, Yang J (2019) Automatic segmentation of cardiac substructures from noncontrast CT images: accurate enough for dosimetric analysis? Acta Oncol Stockh Swed 58:81–87. https://doi.org/10.1080/0284186X.2018.1521985

    Article  Google Scholar 

  12. Shahzad R, Bos D, Budde RPJ, Pellikaan K, Niessen WJ, van der Lugt A, van Walsum T (2017) Automatic segmentation and quantification of the cardiac structures from non-contrast-enhanced cardiac CT scans. Phys Med Biol 62:3798–3813. https://doi.org/10.1088/1361-6560/aa63cb

    Article  PubMed  Google Scholar 

  13. Chen S, Zhong X, Hu S, Dorn S, Kachelrieß M, Lell M, Maier A (2020) Automatic multi-organ segmentation in dual-energy CT (DECT) with dedicated 3D fully convolutional DECT networks. Med Phys 47:552–562. https://doi.org/10.1002/mp.13950

    Article  PubMed  Google Scholar 

  14. González Sánchez JC, Magnusson M, Sandborg M, Carlsson Tedgren Å, Malusek A (2020) Segmentation of bones in medical dual-energy computed tomography volumes using the 3D U-Net. Phys Med 69:241–247. https://doi.org/10.1016/j.ejmp.2019.12.014

    Article  PubMed  Google Scholar 

  15. Lartaud P-J, Rouchaud A, Rouet J-M, Nempont O, Boussel L (2019) Spectral CT based training dataset generation and augmentation for conventional CT vascular segmentation. In: Shen D, Liu T, Peters TM, Staib LH, Essert C, Zhou S, Yap P-T, Khan A (eds) Medical image computing and computer assisted intervention—MICCAI 2019. Springer, Cham, pp 768–775

    Chapter  Google Scholar 

  16. Bruns S, Wolterink JM, van Hamersvelt RW, Leiner T, Išgum I (2019) CNN-based segmentation of the cardiac chambers and great vessels in non-contrast-enhanced cardiac CT. In: International conference on medical imaging with deep learning—extended abstract track, London, United Kingdom

  17. Bruns S, Wolterink JM, Takx RAP, van Hamersvelt RW, Suchá D, Viergever MA, Leiner T, Išgum I (2020) Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT. Med Phys 47:5048–5060. https://doi.org/10.1002/mp.14451

    Article  CAS  PubMed  Google Scholar 

  18. McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276:637–653. https://doi.org/10.1148/radiol.2015142631

    Article  Google Scholar 

  19. Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 21:733–744. https://doi.org/10.1088/0031-9155/21/5/002

    Article  CAS  PubMed  Google Scholar 

  20. Si-Mohamed S, Dupuis N, Tatard-Leitman V, Rotzinger D, Boccalini S, Dion M, Vlassenbroek A, Coulon P, Yagil Y, Shapira N, Douek P, Boussel L (2019) Virtual versus true non-contrast dual-energy CT imaging for the diagnosis of aortic intramural hematoma. Eur Radiol 29:6762–6771. https://doi.org/10.1007/s00330-019-06322-5

    Article  PubMed  Google Scholar 

  21. Sauter AP, Muenzel D, Dangelmaier J, Braren R, Pfeiffer F, Rummeny EJ, Noël PB, Fingerle AA (2018) Dual-layer spectral computed tomography: virtual non-contrast in comparison to true non-contrast images. Eur J Radiol 104:108–114. https://doi.org/10.1016/j.ejrad.2018.05.007

    Article  PubMed  Google Scholar 

  22. Wang C, MacGillivray T, Macnaught G, Yang G, Newby D (2018) A two-stage 3D Unet framework for multi-class segmentation on full resolution image. arXiv:1804.04341 Cs

  23. Xu Z, Wu Z, Feng J (2018) CFUN: combining faster R-CNN and U-net network for efficient whole heart segmentation. arXiv:1812.04914 Cs

  24. Ye C, Wang W, Zhang S, Wang K (2019) Multi-depth fusion network for whole-heart CT image segmentation. IEEE Access 7:23421–23429. https://doi.org/10.1109/ACCESS.2019.2899635

    Article  Google Scholar 

  25. Yang X, Bian C, Yu L, Ni D, Heng P-A (2018) 3D convolutional networks for fully automatic fine-grained whole heart partition. In: Pop M, Sermesant M, Jodoin P-M, Lalande A, Zhuang X, Yang G, Young A, Bernard O (eds) Statistical atlases and computational models of the heart. ACDC and MMWHS challenges. Springer, Cham, pp 181–189

    Chapter  Google Scholar 

  26. He K, Sun J, Tang X (2013) Guided image filtering. IEEE Trans Pattern Anal Mach Intell 35:1397–1409. https://doi.org/10.1109/TPAMI.2012.213

    Article  PubMed  Google Scholar 

  27. Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15:29. https://doi.org/10.1186/s12880-015-0068-x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was partially funded by a grant from the Association Nationale de la Recherche et de la Technologie (#2018/1716).

Author information

Authors and Affiliations

Authors

Contributions

Authors D. Hallé and A. Schleef contributed equally to this work.

Corresponding author

Correspondence to Pierre-Jean Lartaud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

Informed consent was obtained from all individual participants included in the study, following MR004 protocol.

Consent for publication

Informed consent was obtained from all individual participants included in the study, following MR004 protocol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lartaud, PJ., Hallé, D., Schleef, A. et al. Spectral augmentation for heart chambers segmentation on conventional contrasted and unenhanced CT scans: an in-depth study. Int J CARS 16, 1699–1709 (2021). https://doi.org/10.1007/s11548-021-02468-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-021-02468-0

Keywords

Navigation