Skip to main content

Advertisement

Log in

Automatic detection of attachment sites for knee ligaments and tendons on CT images

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

The diseases and injuries of the knee joint are the most common orthopedic disorders. Personalized knee models can be helpful in the process of early intervention and lasting treatment techniques development. Fully automatic reconstruction of knee joint anatomical structures from medical images (CT, MRI, ultrasound) remains a challenge. For this reason, most of state-of-the-art knee joint models contain simplifications such as representation of muscles and ligaments as line segments connecting two points which replace attachment areas. The paper presents algorithms for automatic detection of such points on knee CT images.

Methods

This paper presents three approaches to automatic detection of ligaments and tendons attachment sites on the patients CT images: qualitative anatomical descriptions, analysis of bones curvature, and quantitative anatomical descriptions. Combinations of these approaches result in new automatic detection algorithms. Each algorithm exploits anatomical peculiarities of each attachment site, e.g., bone curvature and number of other attachments in a neighborhood of the site.

Results

The experimental dataset consisted of 26 anonymized CT sequences containing right and left knee joints in different resolutions. The proposed algorithms take into account bone surface curvatures and spatial differences in locations of medial and lateral parts of both knees. The algorithms for detection of quadriceps femoris, popliteus, biceps femoris tendons, and lateral collateral and medial collateral ligaments attachment sites are provided, as well as examples of their application. Two algorithms are validated by comparison with known statistics of ligaments lengths and also using ground truth annotations for anatomical landmarks approved by clinical experts.

Conclusions

The algorithms simplify generation of patient-specific knee joint models demanded in personalized biomechanical models. The algorithms in the current implementation have two important limitations. First, the correctness of the produced results depends on the bones segmentation quality. Second, the presented algorithms detect a point of the attachment site, which is not necessarily its center. Therefore, manual correction of the attachment site location may be required for attachments with relatively large area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Salamatova VY, Yurova AS, Vassilevski YV, Wang L (2019) Automatic segmentation algorithms and personalized geometric modelling for a human knee. Russ J Numer Anal Math Model 34(6):361–367. https://doi.org/10.1515/rnam-2019-0031

    Article  Google Scholar 

  2. Yurova A, Salamatova V, Vassilevski Y, Wang L, Goreynov S, Kosukhin O, Shipilov A, Aliev Y (2021) Personalized geometric modeling of a human knee: data, algorithms, outcomes. In: Favorskaya MN, Favorskaya AV, Petrov IB, Jain LC(eds) Smart modelling for engineering systems, smart innovation, systems and technologies, vol 214. Springer. https://doi.org/10.1007/978-981-33-4709-0_18

  3. CGAL 5.3 - Surface Mesh https://doc.cgal.org/latest/Surface_mesh/index.html

  4. Free project-hosting platform for the biomedical computation community https://simtk.org

  5. Wu D, Sofka M, Birkbeck N, Zhou SK (2014) Segmentation of Multiple Knee Bones from CT for Orthopedic Knee Surgery Planning. In: Golland P, Hata N, Barillot C, Hornegger J, Howe R (eds) Medical image computing and computer-assisted intervention - MICCAI 2014. MICCAI 2014. Lecture Notes in Computer Science, vol 8673. Springer, Cham

  6. Fripp J, Warfield SK, Crozier S, Ourselin S (2006) Automatic segmentation of the knee bones using 3D active shape models. In: 18th international conference on pattern recognition (ICPR’06), Hong Kong, pp 167–170. https://doi.org/10.1109/ICPR.2006.306

  7. Vilimek D, Kubíček J, Penhaker M, Oczka D, Augustynek M, Cerny M (2019) Current automatic methods for knee cartilage segmentation: a review. https://doi.org/10.1109/EUVIP47703.2019.8946132

  8. Iranpour-Boroujeni T, Watanabe A, Bashtar R, Yoshioka H, Duryea J (2011) Quantification of car-tilage loss in local regions of knee joints using semi-automated segmentation software: analysis of longitu-dinal data from the Osteoarthritis Initiative (OAI). Os-teoarthritis and Cartilage 19(3):309–314

    Article  CAS  Google Scholar 

  9. Folkesson J, Dam E, Olsen O, Pettersen P, Christiansen C (2007) Segmenting articular cartilage automatically using a voxel classification approach. IEEE Trans Med Imaging 26:106–115. https://doi.org/10.1109/TMI.2006.886808

    Article  PubMed  Google Scholar 

  10. Fripp J, Crozier S, Warfield SK, Ourselin S (2010) Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee. IEEE Trans Med Imaging 29(1):55–64. https://doi.org/10.1109/TMI.2009.2024743

    Article  PubMed  Google Scholar 

  11. Ambellan F, Tack A, Ehlke M, Zachow S (2019) Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative. Med Image Anal 52:109–118

    Article  Google Scholar 

  12. Seim H, Lamecker H, Heller M, Zachow S (2008) Segmentation of bony structures with ligament attachment sites. Informatik aktuell. https://doi.org/10.1007/978-3-540-78640-5_42

    Article  Google Scholar 

  13. Kaptein B, van der Helm F (2004) Estimating muscle attachment contours by transforming geometrical bone models. J Biomech 37:263–73. https://doi.org/10.1016/j.jbiomech.2003.08.005

    Article  PubMed  CAS  Google Scholar 

  14. Delp S, Blemker S (2005) Three-dimensional representation of complex muscle architectures and geometries. Ann Biomed Eng 33:661–73. https://doi.org/10.1007/s10439-005-1433-7

    Article  PubMed  Google Scholar 

  15. Blemker SS, Asakawa DS, Gold GE, Delp SL (2007) Image-based musculoskeletal modeling: applications, advances, and future opportunities. J Magn Reson Imaging 25(2):441–451. https://doi.org/10.1002/jmri.20805

    Article  PubMed  Google Scholar 

  16. Lee H, Hong H, Kim J (2013) Anterior cruciate ligament segmentation from knee MR images using graph cuts with geometric and probabilistic shape constraints. In: Lee KM, Matsushita Y, Rehg JM, Hu Z (eds) Computer vision - ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7725. Springer, Berlin, Heidelberg

  17. Uozumi Y, Nagamune K, Mizuno K (2015) Computer-aided segmentation system of posterior cruciate ligament in knee joint from CT and MRI using anatomical information: A Pilot Study of System Configuration. In: 2015 IEEE international conference on systems, man, and cybernetics, Kowloon, pp 2295–2298. https://doi.org/10.1109/SMC.2015.401

  18. Paproki A, Wilson KJ, Surowiec RK, Ho CP, Pant A, Bourgeat P, Engstrom C, Crozier S, Fripp J (2016) Automated segmentation and T2-mapping of the posterior cruciate ligament from MRI of the knee: data from the osteoarthritis initiative. In: IEEE 13th international symposium on biomedical imaging (ISBI). Prague 2016:424–427. https://doi.org/10.1109/ISBI.2016.7493298

  19. Nacey NC, Geeslin MG, Miller GW, Pierce JL (2017) Magnetic resonance imaging of the knee: An overview and update of conventional and state of the art imaging. J Magn Reson Imaging 45(5):1257–1275. https://doi.org/10.1002/jmri.25620

    Article  PubMed  Google Scholar 

  20. Hayashi D, Roemer FW, Guermazi A (2016) Imaging for osteoarthritis. Ann Phys Rehabil Med 59(3):161–169

    Article  CAS  Google Scholar 

  21. Dong Y, Mou Z, Huang Z, Hu G, Dong Y, Xu Q (2013) Three-dimensional reconstruction of subject-specific knee joint using computed tomography and magnetic resonance imaging image data fusions. Proc Inst Mech Eng H 227(10):1083–1093. https://doi.org/10.1177/0954411913493723

    Article  PubMed  Google Scholar 

  22. Madeti B, Rao CS, Pragada S (2015) Biomechanics of knee joint - A review. Front Mech Eng 10:176–186. https://doi.org/10.1007/s11465-014-0306-x

    Article  Google Scholar 

  23. Amano K, Li Q, Ma CB (2016) Functional knee assessment with advanced imaging. Curr Rev Musculoskelet Med 9(2):123–129. https://doi.org/10.1007/s12178-016-9340-0

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hofer Matthias (2010) CT Teaching Manual: A Systematic Approach to CT Reading. Thieme

  25. Drake R, Vogl AW, Mitchell A (2019) Gray’s Anatomy for students. 4th Edition. Elsevier

  26. Prives M, Lysenkov N, Bushkovich V. (Prives M.G.,Lysenkov N.K.,Bushkovich V.I.). Human anatomy. Volume 1, Volume 2. (Anatomiya cheloveka .V 2-h tomah)

  27. Saigo T, Tajima G, Kikuchi S, Yan J, Maruyama M, Sugawara A, Doita M (2017) Morphology of the insertions of the superficial medial collateral ligament and posterior oblique ligament using 3-dimensional computed tomography: a cadaveric study. Arthroscopy 33(2):400–407

    Article  Google Scholar 

  28. Lee JH, Kim KJ, Jeong YG, Lee NS, Han SY, Lee CG, Kim KY, Han SH (2014) Pes anserinus and anserine bursa: anatomical study. Anatomy Cell Biol 47(2):127–131

    Article  Google Scholar 

  29. Liu F, Yue B, Gadikota HR, Kozanek M, Liu W, Gill TJ, Rubash HE, Li G (2010) Morphology of the medial collateral ligament of the knee. J Orthop Surg Res 5:69. https://doi.org/10.1186/1749-799X-5-69

    Article  PubMed  PubMed Central  Google Scholar 

  30. LaPrade RF, Engebretsen AH, Ly TV, Johansen S, Wentorf FA, Engebretsen L (2007) The anatomy of the medial part of the knee. J Bone Joint Surg Am 89(9):2000–2010. https://doi.org/10.2106/JBJS.F.01176

    Article  PubMed  Google Scholar 

  31. Iacono F, Lo Presti M, Bruni D, Raspugli GF, Bignozzi S, Sharma B, Marcacci M (2013) The adductor tubercle: a reliable landmark for analysing the level of the femorotibial joint line. Knee Surg Sports Traumatol Arthrosc 21(12):2725–9

    Article  Google Scholar 

  32. Pereira G, von Kaeppler E, Alaia M, Montini K, Lopez M, Di Cesare P, Amanatullah D (2016) Calculating the position of the joint line of the knee using anatomical landmarks. Orthopedics 39:381–386. https://doi.org/10.3928/01477447-20160729-01

    Article  PubMed  Google Scholar 

  33. Trimesh2, C++ library and set of utilities for input, output, and basic manipulation of 3D triangle meshes

  34. Clément B, Drouin G, Shorrock G, Gely P (1989) Statistical analysis of knee ligament lengths. J Biomech 22(8–9):767–774

  35. LaPrade R, Ly T, Wentorf F, Engebretsen L (2003) The posterolateral attachments of the knee a qualitative and quantitative morphologic analysis of the fibular collateral ligament, Popliteus Tendon, Popliteofibular Ligament, and Lateral Gastrocnemius Tendon*. Am J Sports Med 31:854–60

    Article  Google Scholar 

  36. Voos JE, Mauro CS, Wente T, Warren RF, Wickiewicz TL (2012) Posterior cruciate ligament: anatomy, biomechanics, and outcomes. Am J Sports Med 40(1):222–31

    Article  Google Scholar 

  37. Kawaguchi Y, Kondo E, Takeda R, Akita K, Yasuda K, Amis AA (2015) The role of fibers in the femoral attachment of the anterior cruciate ligament in resisting tibial displacement. Arthroscopy 31(3):435–444

    Article  Google Scholar 

  38. Amis AA, Gupte CM, Bull AM, Edwards A (2006) Anatomy of the posterior cruciate ligament and the meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc 14(3):257–63

    Article  CAS  Google Scholar 

Download references

Funding

The research was funded by Russian Science Foundation grant 21-71-30023.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The data were obtained retrospectively from anonymized databases and not generated intentionally for the study. For this type of study, a formal consent is not required.

Informed consent

There is no informed consent required for the work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurova, A., Salamatova, V., Lychagin, A. et al. Automatic detection of attachment sites for knee ligaments and tendons on CT images. Int J CARS 17, 393–402 (2022). https://doi.org/10.1007/s11548-021-02527-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-021-02527-6

Keywords

Navigation