Skip to main content
Log in

Brain tumor segmentation in MRI images using nonparametric localization and enhancement methods with U-net

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose:

Segmentation is one of the critical steps in analyzing medical images since it provides meaningful information for the diagnosis, monitoring, and treatment of brain tumors. In recent years, several artificial intelligence-based systems have been developed to perform this task accurately. However, the unobtrusive or low-contrast occurrence of some tumors and similarities to healthy brain tissues make the segmentation task challenging. These yielded researchers to develop new methods for preprocessing the images and improving their segmentation abilities.

Methods:

This study proposes an efficient system for the segmentation of the complete brain tumors from MRI images based on tumor localization and enhancement methods with a deep learning architecture named U-net. Initially, the histogram-based nonparametric tumor localization method is applied to localize the tumorous regions and the proposed tumor enhancement method is used to modify the localized regions to increase the visual appearance of indistinct or low-contrast tumors. The resultant images are fed to the original U-net architecture to segment the complete brain tumors.

Results:

The performance of the proposed tumor localization and enhancement methods with the U-net is tested on benchmark datasets, BRATS 2012, BRATS 2019, and BRATS 2020, and achieved superior results as 0.94, 0.85, 0.87, 0.88 dice scores for the BRATS 2012 HGG-LGG, BRATS 2019, and BRATS 2020 datasets, respectively.

Conclusion:

The results and comparisons showed how the proposed methods improve the segmentation ability of the deep learning models and provide high-accuracy and low-cost segmentation of complete brain tumors in MRI images. The results might yield the implementation of the proposed methods in segmentation tasks of different medical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251. https://doi.org/10.1109/TMI.2016.2538465

    Article  PubMed  Google Scholar 

  2. Chithra P, Dheepa G (2018) An analysis of segmenting and classifying tumor regions in MRI images using CNN. Int J Pure Appl Math 01(118):1–12

    Google Scholar 

  3. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber MA, Arbel T, Avants BB, Ayache N, Buendia P, Collins DL, Cordier N, Corso JJ, Criminisi A, Das T, Delingette H, Demiralp C, Durst CR, Dojat M, Doyle S, Festa J, Forbes F, Geremia E, Glocker B, Golland P, Guo X, Hamamci A, Iftekharuddin KM, Jena R, John NM, Konukoglu E, Lashkari D, Mariz JA, Meier R, Pereira S, Precup D, Price SJ, Raviv TR, Reza SMS, Ryan M, Sarikaya D, Schwartz L, Shin HC, Shotton J, Silva C, Sousa N, Subbanna NK, Szekelyand G, Taylor TJ, Thomas OM, Tustison NJ, Unal G, Vasseur F, Wintermark M, Ye DH, Zhao L, Zhao B, Zikic D, Prastawa M, Reyes M, Van Leemput K (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024. https://doi.org/10.1109/TMI.2014.2377694

    Article  PubMed  Google Scholar 

  4. Currie S, Hoggard N, Craven IJ, Hadjivassiliou M, Wilkinson ID (2013) Understanding MRI: basic MR physics for physicians. Postgrad Med J 89(1050):209–223. https://doi.org/10.1136/postgradmedj-2012-131342

    Article  PubMed  Google Scholar 

  5. Anitha V, Murugavalli S (2016) Brain tumour classification using two-tier classifier with adaptive segmentation technique. IET Comput Vision 10(1):9–17. https://doi.org/10.1049/iet-cvi.2014.0193

    Article  Google Scholar 

  6. Rajinikanth V, Satapathy SC, Fernandes SL, Nachiappan S (2017) Entropy based segmentation of tumor from brain MR images - a study with teaching learning based optimization. Pattern Recogn Lett 94:87–95. https://doi.org/10.1016/j.patrec.2017.05.028

    Article  Google Scholar 

  7. Kalaiselvi T, Kumarashankar P, Sriramakrishnan P (2020) Three-phase automatic brain tumor diagnosis system using patches based updated run length region growing technique. J Digit Imaging 33:465–479. https://doi.org/10.1007/s10278-019-00276-2

    Article  CAS  PubMed  Google Scholar 

  8. Eltayeb E, Salem N, Al-Atabany W (2019) Automated brain tumor segmentation from multi-slices FLAIR MRI images. Bio-Med Mater Eng 08(30):1–13. https://doi.org/10.3233/BME-191066

    Article  CAS  Google Scholar 

  9. Rehman ZU, Zia MS, Bojja GR, Yaqub M, Jinchao F, Arshid K (2020) Texture based localization of a brain tumor from MR-images by using a machine learning approach. Med Hypotheses. https://doi.org/10.1016/j.mehy.2020.109705

  10. Amin J, Sharif M, Raza M, Saba T, Anjum MA (2019) Brain tumor detection using statistical and machine learning method. Comput Methods Programs Biomed 177:69–79. https://doi.org/10.1016/j.cmpb.2019.05.015

    Article  PubMed  Google Scholar 

  11. Soltaninejad M, Yang G, Lambrou T, Allinson N, Jones TL, Barrick TR, Howe FA, Ye X (2017) Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int J CARS 12:183–203. https://doi.org/10.1007/s11548-016-1483-3

    Article  Google Scholar 

  12. Ahmad P, Qamar S, Hashemi SR, Shen L (2020) Hybrid labels for brain tumor segmentation. In: Crimi A, Bakas S (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes 2019. Lecture notes in computer science, vol 11993. Springer, Cham. https://doi.org/10.1007/978-3-030-46643-5_15

    Chapter  Google Scholar 

  13. Ballestar LM, Vilaplana V (2021) MRI brain tumor segmentation and uncertainty estimation using 3D-UNet architectures. In: Crimi A, Bakas S (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes 2020. Lecture notes in computer science, vol 12658. Springer, Cham. https://doi.org/10.1007/978-3-030-72084-1_34

    Chapter  Google Scholar 

  14. Zhao C, Zhao Z, Zeng Q, Feng Y (2021) MVP U-Net: multi-view pointwise U-net for brain tumor segmentation. In: Crimi A, Bakas S (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries BrainLes 2020 Lecture notes in computer science, vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_9

    Chapter  Google Scholar 

  15. Awasthi N, Pardasani R, Gupta S (2021) Multi-threshold Attention U-Net (MTAU) based model for multimodal brain tumor segmentation in MRI scans. In: Crimi A, Bakas S (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes 2020. Lecture notes in computer science, vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_15

    Chapter  Google Scholar 

  16. Razzak MI, Imran M, Xu G (2018) Efficient brain tumor segmentation with multiscale two-pathway-group conventional neural networks. IEEE J Biomed Health Inform 23(5):1911–1919. https://doi.org/10.1109/JBHI.2018.2874033(2017)

    Article  PubMed  Google Scholar 

  17. Li H, Li A, Wang M (2019) A novel end-to-end brain tumor segmentation method using improved fully convolutional networks. Comput Biol Med 108:150–160. https://doi.org/10.1016/j.compbiomed.2019.03.014

    Article  PubMed  Google Scholar 

  18. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention (MICCAI), LNCS, vol 9351, pp 234–241, Springer. http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a

  19. Hu K, Gan Q, Zhang Y, Deng S, Xiao F, Huang W, Cao C, Gao X (2019) Brain tumor segmentation using multi-cascaded convolutional neural networks and conditional random field. IEEE Access 7:92615–92629. https://doi.org/10.1109/ACCESS.2019.2927433

    Article  Google Scholar 

  20. Khan H, Shah PM, Shah MA, ul Islam S, Rodrigues JJ, (2020) Cascading handcrafted features and Convolutional Neural Network for IoT-enabled brain tumor segmentation. Comput Commun 153:196–207. https://doi.org/10.1016/j.comcom.2020.01.013

  21. Wu W, Li D, Du J, Gao X, Gu W, Zhao F, Feng X, Yan H (2020) An intelligent diagnosis method of brain MRI tumor segmentation using deep convolutional neural network and SVM algorithm. Comput Math Methods Med 07(2020):1–10. https://doi.org/10.1155/2020/6789306

    Article  Google Scholar 

  22. Chithra PL, Dheepa G (2020) Di-phase midway convolution and deconvolution network for brain tumor segmentation in MRI images. Int J Imaging Syst Technol 02:30. https://doi.org/10.1002/ima.22407

    Article  Google Scholar 

  23. Zeineldin RA, Karar ME, Coburger J, Wirtz CR, Burgert O (2020) DeepSeg: deep neural network framework for automatic brain tumor segmentation using magnetic resonance FLAIR images. Int J CARS 15:909–920. https://doi.org/10.1007/s11548-020-02186-z

    Article  Google Scholar 

  24. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations, 2015

  25. He K, Zhang X, Ren S, Sun J (2016) Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) p 770–778

  26. Huang G, Liu Z, Maaten LVD, Weinberger KQ (2017) Densely connected convolutional networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR) p 2261–2269

  27. Chollet F (2017) Xception: Deep learning with depthwise separable convolutions. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR) pp 1800–1807

  28. Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 8697–8710. https://doi.org/10.1109/CVPR.2018.00907

  29. Sohail N, Anwar SM, Majeed F, Sanin C, Szczerbicki E (2021) Smart approach for glioma segmentation in magnetic resonance imaging using modified convolutional network architecture (U-NET). Cybern Syst 52:445–460. https://doi.org/10.1080/01969722.2020.1871231

    Article  Google Scholar 

  30. Saeed MU, Al G, Bin W, Almotiri SH, AlGhamdi MA, Nagra AA, Masood K (2021) RMU-net: a novel residual mobile U-net model for brain tumor segmentation from MR images. Electronics 10:1962. https://doi.org/10.3390/electronics10161962

    Article  Google Scholar 

  31. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) MobileNetV2: inverted residuals and linear bottlenecks. In: IEEE/CVF conference on computer vision and pattern recognition (CVPR) pp 4510–4520. https://doi.org/10.1109/CVPR.2018.00474

  32. Ozsahin I, Sekeroglu B, Mok GSP (2019) The use of back propagation neural networks and 18F-Florbetapir PET for early detection of Alzheimer’s disease using Alzheimer’s Disease Neuroimaging Initiative database. PLoS ONE 14:1–13. https://doi.org/10.1371/journal.pone.0226577

    Article  CAS  Google Scholar 

  33. Ozsahin I, Sekeroglu B, Pwavodi PC, Mok GSP (2020) High-accuracy Automated Diagnosis of Parkinson’s Disease. Current Med Imaging, 16:6:688–694(7) https://doi.org/10.2174/1573405615666190620113607

  34. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, Freymann JB, Farahani K, Davatzikos C (2017) Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat Sci Data 4:1–13. https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  35. Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A et al (2018) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629

  36. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J, Freymann J, Farahani K, Davatzikos C (2017) Segmentation labels for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

    Article  Google Scholar 

  37. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J, Freymann J, Farahani K, Davatzikos C (2017) Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

    Article  Google Scholar 

  38. Tania S, Rowaida R (2016) A Comparative Study of Various Image Filtering Techniques for Removing Various Noisy Pixels in Aerial Image. Int J Signal Process Image Process Pattern Recognit 9:113–124. https://doi.org/10.14257/ijsip.2016.9.3.10

  39. Burger W, Burge MJ (2016) Digital image processing: an algorithmic introduction using Java. Springer-Verlag, Berlin

    Book  Google Scholar 

  40. Allen M (2017) The SAGE encyclopedia of communication research methods. SAGE Publications, New York

    Book  Google Scholar 

  41. Nai YH, Teo BW, Tan NL, O’Doherty S, Stephenson MC, Thian YL, Chiong E, Reilhac A (2021) Comparison of metrics for the evaluation of medical segmentations using prostate MRI dataset. Comput Biol Med 134:104497. https://doi.org/10.1016/j.compbiomed.2021.104497

    Article  PubMed  Google Scholar 

  42. Al-Antari MA, Al-Masni MA, Choi MT, Han SM, Kim TS (2018) A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int J Med Informatics 117:44–54. https://doi.org/10.1016/j.ijmedinf.2018.06.003

    Article  Google Scholar 

  43. Wong TT (2015) Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recogn 48:2839–2846. https://doi.org/10.1016/j.patcog.2015.03.009

  44. Montelius M, Ljungberg M, Horn M, Forssell-Aronsson E (2012) Tumour size measurement in a mouse model using high resolution MRI. BMC Med Imaging. https://doi.org/10.1186/1471-2342-12-12

    Article  PubMed  PubMed Central  Google Scholar 

  45. Martinez-Murcia FJ, Gorriz JM, Ramirez J, Puntonet CG, Salas-Gonzalez D, Initiative Alzheimer’s Disease Neuroimaging (2012) Computer aided diagnosis tool for Alzheimer’s disease based on Mann-Whitney-Wilcoxon U-test. Expert Syst Appl 39:9676–9685. https://doi.org/10.1016/j.eswa.2012.02.153

  46. Isensee F, Jaeger PF, Full PM, Vollmuth P, Maier-Hein KH (2021) nnU-Net for Brain Tumor Segmentation. In: Crimi A, Bakas S (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes 2020. Lecture notes in computer science, vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_11

    Chapter  Google Scholar 

  47. Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18(2):203–211. https://doi.org/10.1038/s41592-020-01008-z

    Article  CAS  PubMed  Google Scholar 

  48. Jia H, Cai W, Huang H, Xia Y (2021) H2NF-net for brain tumor segmentation using multimodal MR imaging: 2nd place solution to BraTS challenge 2020 Segmentation Task. In: Crimi A, Bakas S (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries BrainLes 2020 Lecture notes in computer science, vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_6

    Chapter  Google Scholar 

  49. Wang Y, Zhang Y, Hou F, Liu Y, Tian J, Zhong C, Zhang Y, He Z (2021) Modality-pairing learning for brain tumor segmentation. In: Crimi A, Bakas S (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries BrainLes 2020 Lecture notes in computer science, vol 12658. Springer, Cham. https://doi.org/10.1007/978-3-030-72084-1_21

    Chapter  Google Scholar 

  50. Yuan Y (2021) Automatic brain tumor segmentation with scale attention network. In: Crimi A, Bakas S (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes 2020. Lecture notes in computer science, vol 12658. Springer, Cham. https://doi.org/10.1007/978-3-030-72084-1_26

    Chapter  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Ilhan.

Ethics declarations

Conflict of interest/Competing interests:

The authors declare that they have no conflict of interest.

Ethics approval:

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate:

This article does not contain patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilhan, A., Sekeroglu, B. & Abiyev, R. Brain tumor segmentation in MRI images using nonparametric localization and enhancement methods with U-net. Int J CARS 17, 589–600 (2022). https://doi.org/10.1007/s11548-022-02566-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-022-02566-7

Keywords

Navigation