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Abstract
Purpose: Bronchoscopic intervention is a widely used clinical technique for pulmonary diseases, which requires an accurate
and topological complete airway map for its localization and guidance. The airway map could be extracted from chest
computed tomography (CT) scans automatically by airway segmentation methods. Due to the complex tree-like structure of
the airway, preserving its topology completeness while maintaining the segmentation accuracy is a challenging task.
Methods: In this paper, a long-term slice propagation (LTSP) method is proposed for accurate airway segmentation from
pathological CT scans. We also design a two-stage end-to-end segmentation framework utilizing the LTSP method in the
decoding process. Stage 1 is used to generate a coarse feature map by an encoder–decoder architecture. Stage 2 is to adopt
the proposed LTSP method for exploiting the continuity information and enhancing the weak airway features in the coarse
feature map. The final segmentation result is predicted from the refined feature map.
Results: Extensive experiments were conducted to evaluate the performance of the proposed method on 70 clinical CT scans.
The results demonstrate the considerable improvements of the proposed method compared to some state-of-the-art methods
as most breakages are eliminated and more tiny bronchi are detected. The ablation studies further confirm the effectiveness
of the constituents of the proposed method and the efficacy of the framework design.
Conclusion: Slice continuity information is beneficial to accurate airway segmentation. Furthermore, by propagating the
long-term slice feature, the airway topology connectivity is preserved with overall segmentation accuracy maintained.
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Introduction

Bronchoscopic intervention [1–3] is widely used in clini-
cal practice since it could achieve minimally invasive access
techniques for pulmonary diseases. To improve the efficacy
of the bronchoscopic intervention, an accurate 3D airway
map extracted from chest computed tomography (CT) is
required,which is essential to the endoscopic tips localization
and intraoperative guidance. However, due to the complex
tree-like structure, manual segmentation of the airway from
chest CT scans is time-consuming and requires expert knowl-
edge. Therefore, to relieve the burden of clinicians, automatic
airway segmentationmethods are proposed to extract airways
accurately.

Traditional airway segmentation methods are always
designed based on region growing [4,5] and morphology
operation [6], which are very sensitive to the manually
designed features. Thus, their performance will be degraded
once noises appear. Besides, owing to the similarity between
bronchi and surrounding human tissues, these methods will
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Fig. 1 The impact of leakages and breakages in the airway for bron-
choscopic intervention. a describes the principle of bronchoscopic
intervention referred to [3]. b demonstrates that airway leakages will

provide an incorrect destination and mislead the trajectory. c illustrates
that airway breakages will interrupt the planning trajectory

cause severe leakages and breakages. As shown in Fig. 1,
in bronchoscopic intervention practice, leakages in the air-
way segmentation will lead to misleading destinations while
breakages will cause interrupted trajectories. Recently, con-
volutional neural networks (CNNs)-based methods [7–11]
are increasingly developed for airway extraction. U-Net [12]
or 3D U-Net [13] is widely used as the backbone to acquire
a coarse airway segmentation result, which is then refined
by utilizing prior knowledge like neighborhood connectivity
[14] or global information [15].

However, due to the complex tree-like structure of the
airway, acquiring accurate and fine-grained segmentation
results is difficult. There are several challenges to be solved
in accurate airway segmentation tasks. First, the intensity dis-
tribution is different in the main trachea region and bronchi
region. In the main trachea region, the intensity contrast
between the airway lumen and the wall is distinct and the
features are easy to learn, while the ambiguity of intensity
contrast in the bronchi region is hard to identify for the CNN
models. Second, the encoder–decoder architecture is widely
used in the CNN models like U-Net, where several pooling
operations are utilized. Since some bronchi only have a diam-
eter of 2-5 voxels, these features will be vanished by pooling
operations and are hard to reconstruct in the decoder. Fur-
thermore, these two challenges will result in weak airway
features in the decoding stage and affect the accuracy of air-
way segmentation. Since adjacent slices in chest CT scans

have similar airway shape and lumen position, one intuition
for weak feature enhancement is to use this airway continu-
ity prior knowledge. The prior knowledge could be achieved
by applying slice feature propagation, so as to strengthen the
weak feature and impose the continuity constraints.

To address the above problems and preserve the topo-
logical connectivity of the airway, we propose a two-stage
end-to-end framework for accurate airway segmentation
using long-term slice propagation (LTSP). In the proposed
method, the slice relationship is considered in the decoding
stage of the framework. The slice feature is transferred in the
proper direction to fully recover the continuity information
destroyed in the encoder. Although slice propagation could
alleviate the breakage phenomenon by enhancing the airway
features, there remains a problem that slice features are hard
to transfer among too long distances. In our method, to solve
the above gradient vanish problem, we further design the
LTSP cell in the decoding stagewhere continuity information
is extracted and densely propagates to other adjacent slices.
Furthermore, we compare the proposed airway segmentation
method to some state-of-the-art methods in 70 clinical CT
scans. Extensive experiments show that our method achieves
superior performance in extracting topological complete air-
way while maintaining the competitive overall segmentation
accuracy.
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Methodology

The overview of the proposed airway segmentation method
is illustrated in Fig. 2, which is a two-stage end-to-end frame-
work. The first stage is used to acquire a coarse feature
map from the input cube by utilizing an encoder–decoder
architecture. The second stage is to predict a refined and
well-connected airway segmentation result by: (1) propagat-
ing slice information of the coarse feature map using the
long-term slice propagation (LTSP) method, (2) decoding
the final airway segmentation result from the refined feature
map with skip connection. The whole pipeline processes the
3D input cube as a whole volume except the LTSP module
processes it sequentially.

Stage 1: coarse feature map generation using
encoder–decoder architecture

Stage 1 in the framework is to provide a coarse feature map
by using an encoder and a coarse decoder. The feature map is
extracted for subsequent slice propagation and airway refine-
ment.

In this stage, we employ an encoder–decoder architecture
to extract the airway feature and then recover from the deep
information. A part of 3D U-Net is used as the backbone,
which contains three down-samplings and two up-samplings
with skip connections. In each down-sampling module, two
convolution layers (Conv)with batch normalization (BN) and
rectified linear unit (ReLU) are followed by a max-pooling
layer. In each up-sampling module, the up-sampled feature
map and corresponding feature map in the encoder are con-
catenated together and then passed to a convolution layer
with BN and ReLU.

Given a 3DCTcube input X0 with size of 1×S0×H0×W0,
a coarse feature map Xcoarse with size of C × S × H × W
is generated by stage 1 as

Xcoarse = F1(X0), (1)

where F1(·) denotes the feature extraction process in stage
1.

Stage 2: segmentation refinement using long-term
slice propagation

Stage 2 in the framework is used to densely propagate the
slice features sequentially in the coarse featuremap extracted
in stage 1. The proposed LTSPmethod is designed to transfer
the long-term slice features for the refined featuremap gener-
ation. The final airway segmentation result is then predicted
from the refined feature map by a fine decoder.

Long-term slice propagation

Taking the airway’s continuity prior knowledge into con-
sideration, we utilize the slice propagation method into the
decoder, which aims to enhance the weak airway features in
each slice by integrating the adjacent slice features. Addi-
tionally, we improve the previous spatial CNN [16] method
and propose a long-term slice propagation (LTSP)method for
effective feature transferring. For the place of LTSP module,
as skip connection enables features in the decoder to inte-
grate with features in the encoder, placing the LTSP module
in the decoder could more effectively impose continuity con-
straints. Therefore, the airway features are more efficiently
recovered by the guidance of features in the encoder.

Fig. 2 Illustration of the proposed airway segmentation framework.
The channel number is denoted below each feature map. In the first
stage, a coarse feature map is extracted from 3D CT cropped cube by
an encoder and a coarse decoder. In the second stage, each slice feature

in the coarse feature map is propagated by passing through the LTSP
cell. The results are stacked together and then used to predict the refined
segmentation result by a fine decoder
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Fig. 3 Comparison of spatial CNN method and long-term slice prop-
agation (LTSP) method. a gives the principle of spatial CNN where
convolution operation is used to propagate the slice features in coarse
feature map slice-by-slice. b illustrates the principle of long-term slice
propagation. Each slice in the coarse feature map is passed through the

LTSP cell to acquire a continuity information map which is then fused
with the original feature by slice propagation. c demonstrates the mech-
anism of the designed LTSP cell. It receives the current slice feature Xi ,
previous output Hi−1 and previous cell stateCi−1 to acquire the current
output Hi and cell state Ci by using the updating rules

The original method proposed in [16] uses the spatial
CNN to propagate the neighboring message in 2D images.
However, as it only transfers the feature from a slice to
its nearest neighbor, the propagating airway feature will be
rapidly dismissed and the continuity information will be lost.
To improve the propagation efficiency and expand the recep-
tive field of slice propagation, we propose the long-term slice
propagation (LTSP) method.

Figure 3 gives the comparison of spatial CNNmethod and
LTSP method. As illustrated in Fig. 3a, in spatial CNN, one
slice only receives the feature from its upper slice by directly
utilizing convolution operation. For the complicated tree-like
airway structure, there are several limitations in spatial CNN:
(1) insufficient feature propagation. Some breakages in the
airway are dependent on the feature far from it, which needs
to use features in several slices to recover it. As one slice
only can receive the feature from its nearest neighbor, the
information is not sufficient for its recovery. (2) Short propa-
gation distance. Spatial CNNonly uses convolution to extract
the information from a neighbor slice, leading to the feature
disappearance when the propagation distance is too long.
Besides, a short propagation distance will result in a narrow
receptive field and great propagation deficiency.

To address the problems, we propose the LTSP method to
develop the effectiveness of slice propagation. As illustrated
in Fig. 3b, the LTSP method consists of two parts: informa-
tion extraction and feature propagation.

In the information extraction part, the LTSP cell inspired
by the long short-term memory (LSTM) [17] is designed to
extract airway continuity information. Figure 3c gives the
propagating mechanism of the designed LTSP cell. Given a
coarse feature map Xcoarse with the size of C × S × H ×W ,
each split slice Xi with the size of C × H × W is acquired
by

Xi = Xcoarse[i]. (2)

Together with the previous LTSP cell output Hi−1 and pre-
vious cell state Ci−1 (with each size of C × H × W ), the
forward calculation includes the following three steps. First,
the stacked gates G with the size of 4C × H ×W is acquired
by using 2D convolution operation to double the channel
number of the concatenation of Xi and Hi−1, where G is
computed by

G = Conv(Cat(Xi , Hi−1)). (3)
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Then, the convolution result G is chunked into G1, G2, G3

and G4, with each size of C × H ×W . Pass them into differ-
ent activation function to calculate forget gate G f , new cell
state C̃i , input gate Gi , and output gate Go, respectively. The
calculation process could be described as

G f = σ(G1), C̃i = tanh(G2),

Gi = σ(G3), Go = σ(G4).
(4)

Finally, previous cell state Ci−1 and new cell state C̃i are
used to calculate the updated output Hi and final cell state
Ci by

Ci = G f ◦ Ci−1 + Gi ◦ C̃i ,

Hi = Go ◦ tanh(Ci ).
(5)

In the feature propagation part, the original slice Xi is
updated to X

′
i by propagating information maps Hi−1 and

Hi−2 extracted by LTSP cells. The forward slice propagation
could be described as

X
′
i =

⎧
⎪⎨

⎪⎩

Xi , i = 1,

Xi + f
(
Hi−1 ∗ W1), i = 2,

Xi + f
(
Hi−1 ∗ W1 + Hi−2 ∗ W2), i = 3, ..., S,

(6)

where W1 and W2 denote the convolution weights for 1-
distance feature and 2-distance feature, respectively. And
f (·) denotes the nonlinear activation function like ReLU.
In the end, all updated slices X

′
i are stacked into a new

refined feature map Xfine with the size of C × S × H × W
by

Xfine = [X ′
1, X

′
2, ..., X

′
S]. (7)

Segmentation prediction and optimization

To acquire the airway segmentation from refined feature map
X f ine, a fine decoder with skip connection is used to get the
probability map of the airway Xprob. An argmax operation is
then utilized to predict the final airway segmentation result
Xseg . The prediction process could be described as

Xprob = F2(Xfine),

Xseg = argmax(Xprob),
(8)

where F2(·) denotes the up-sample operation in fine decoder.
In the training process, soft dice loss [18] is used for the

airway segmentation tasks. Given prediction p(x) and corre-
sponding binary label y(x) for each voxel x in segmentation
result volume X , the segmentation loss could be calculated
by

Lseg = 1 − 2
∑

x∈X p(x)y(x) + ε
∑

x∈X (p(x) + y(x)) + ε
, (9)

where smoothing parameter ε is used to avoid division by
zero.

Experiments and results

We evaluate the proposed method in LIDC dataset [14],
where 50 chest CT scans are randomly chosen for training
and the remaining 20 scans are used for testing. Furthermore,
ablation studies are conducted to confirm the effectiveness
of our method.

Datasets and implementation details

The experiment dataset contains 70 clinical chest CT scans,
where the pixel spatial resolution ranges from 0.5 to
0.781mm and slice thickness varies from 0.45 to 1.0mm. The
model is trained on 50 randomly chosen scans and tested on
the remaining 20 scans.

To improve the model’s generalization ability, the HU
value of each scan is truncated into [−1000, 600] and lin-
early mapped into [0, 1]. In the training phase, each CT cube
of size 128 × 112 × 304 is cropped from original CT scans
as the input of the model. Besides, data augmentation is per-
formed to each cropped cube including horizontal flipping
and slight rotation. For training strategy, we adopt Adam
optimizer (β1 = 0.9, β2 = 0.999) with learning rate set
as 0.002. Our method is implemented in PyTorch 1.7 with
NVIDIAGeForceRTX3090. The training process converges
in 30 epochs.

Additionally, we utilize the center crop method instead
of the random crop method to acquire more represen-
tative cropped cubes as the model’s inputs. The center
crop method is used to guarantee that the cropped cubes
are able to contain sufficient airway features. Given a
CT scan with a size of S

′ × H
′ × W

′
, we first search

for the minimum and maximum index for airway region
in x, y, and z directions. We denote these index pairs
as (Xmin, Xmax), (Ymin,Ymax), (Zmin, Zmax) and randomly
choose a voxel P = (x, y, z) from these spans as the cropped
center. The input cube and corresponding binary label with
a size of S0 × H0 × W0 are cropped from original CT scans
and ground truthmaps based on the cropped center. Then, the
cropped cubes are fed into the model for training. Further-
more, we utilize the sliding window technique in the testing
process to acquire each cube’s prediction and combine them
to form the whole airway segmentation result.

Evaluationmetrics and results

To evaluate our method, we adopt four metrics to assess
the topological completeness and segmentation accuracy of
airway prediction results: (1) branches detected (BD), (2)
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Table 1 Results (%) of the proposed framework compared to state-of-the-art methods (Mean±Standard deviation)

Method BD TD DSC FPR

3D U-Net [13] 86.06 ± 11.72 83.10 ± 9.62 93.35 ± 1.74 0.02 ± 0.01

Wang et al. [20] 87.97 ± 9.49 84.61 ± 8.54 93.12 ± 2.00 0.02 ± 0.01

Juarez et al. [15] 87.40 ± 10.15 84.60 ± 8.94 93.51 ± 1.57 0.02 ± 0.02

Our proposed 90.83 ± 9.38 87.59 ± 8.71 92.95 ± 1.61 0.03 ± 0.01

The figure in bold style indicates the best performance in each metric

tree-length detected (TD), (3) Dice coefficient (DSC), and
(4) false positive rate (FPR). The definition of four metrics
could be referred to [19].

In our method, 3D U-Net is adopted to be the backbone
of the segmentation framework. Therefore, we compare our
method with original 3D U-Net [13] and other related state-
of-the-art methods likeWang et al. [20] and Juarez et al. [15].
Wang et al. [20] develop a radial distance loss for detecting
more tiny airway tubular structures. Juarez et al. [15] intro-
duce graph neural network (GNN) module into the deepest
level of 3D U-Net to improve airway connectivity. These
methods are implemented by ourselves and fine-tuned on
the experiment dataset. Table 1 gives the comparison results
which show that our method achieves the best performance
in BD and TD with compelling DSC and FPR. Compared to
others, our method increases the BD and TD by over 3% and

2 %, respectively. Since these two metrics could reflect the
topological completeness of airway segmentation, the com-
parison results also demonstrate that ourmethod outperforms
the others in detecting more small bronchi and improving the
connectivity of airway segmentation.

Qualitative comparison of airway segmentation shown in
Fig. 4 also demonstrates the effectiveness of our method.
Compared to other methods, more small branches and tiny
bronchi are reconstructed in our method, which results in the
great improvement of the airway topological connectivity.
The preservation of airway topological completeness is sig-
nificant for clinical practice like bronchoscopic intervention
and surgical navigation. In Fig. 4b, a great number of break-
ages (false negatives voxels in green color) are eliminated in
our method while maintaining a high overall segmentation
accuracy.

Fig. 4 Rendering of airway segmentation results. a and b give the comparison of different methods in an easy case and a hard case, respectively.
The true positive voxels are shown in red color, while the false negative voxels are shown in green color

123



International Journal of Computer Assisted Radiology and Surgery (2022) 17:857–865 863

Fig. 5 The qualitative comparison in 3D volume and 2D planes of baseline and the proposed LTSP method on a severe case in the COVID-19
dataset [10]. The true positive voxels are shown in red color, while the false negative voxels are shown in green color

Table 2 Comparisons (%) of propagation density and LTSP cells on the testing set when the LTSP module is placed on the decoding stage of the
proposed framework (mean±standard deviation)

Module configuration BD TD DSC FPR

No propagation module 86.06 ± 11.72 83.10 ± 9.62 93.35 ± 1.74 0.02 ± 0.01

One-slice module 87.97 ± 9.49 84.61 ± 8.54 93.12 ± 2.00 0.02 ± 0.01

One-slice + LTSP cells 90.11 ± 10.28 87.20 ± 8.96 93.15 ± 1.79 0.02 ± 0.02

Two-slices module 89.22 ± 9.41 86.39 ± 7.84 92.42 ± 2.79 0.03 ± 0.02

Two-slices + LTSP cells 90.83 ± 9.38 87.59 ± 8.71 92.95 ± 1.61 0.03 ± 0.02

The figure in bold style indicates the best performance in each metric

Moreover, to assess the generalizability of the proposed
framework on hard cases with abnormality, we train our
model in the LIDC dataset and directly test it on the coron-
avirus 2019 (COVID-19) dataset [10], which contains 58 CT
scans with pulmonary diseases. Figure 5 gives the compari-
son of airway segmentation results with 3D U-Net baseline
and the proposed framework on a specific severe case with a
huge abnormality. Qualitative results in 3D volume illustrate
that the proposed method could detect more tiny bronchi
and enhance the overall topological connectivity. Compar-
isons on 2D planes further validate the effectiveness of the
proposed method in detecting airway lumen influenced by
abnormality.

Ablation study

We also conduct ablation studies to further investigate the
effect of each component in our method and the impact of
placing the LTSPmodule in the different stages of the frame-
work. Since we use dense structures in the LTSP method,
the density of this structure should be considered in our
framework. Therefore, experiment comparisons are made by
utilizing modules with different propagation distances in a
single pass. To validate the effectiveness of the LTSP cell in
slice propagation, experiments with or without LTSP cells
are also conducted. Furthermore, we change the place of the

designed LTSP module from decoding stage into encoding
stage and bottleneck to compare the difference.

As shown in Table 2, when placed in the decoding stage of
the framework, the LTSP cells and more densely connected
structures both can achieve higher BD and TD with DSC
maintained. For the comparison of propagation distance, the
two-slice module outperforms the no propagation module
andone-slicemodule since it enables the slice feature to prop-
agate tomore slices directly. Furthermore, experiment results
show that the designed LTSP cell could effectively improve
the segmentation accuracy and topological completeness by
extracting more valuable continuity information.

Qualitative results in Fig. 6 also demonstrate the effective-
ness of increasing direct propagation distance and the adding
value of LTSP cells. Compared with the one-slice module,
more tiny branches are recovered and some breakages are
eliminated by applying the two-slice module. Besides, intro-
ducing LTSP cells into the one-slicemodule is also beneficial
to detecting more essential branches and slight bronchi. The
development of topological completeness is significant in
clinical applications like bronchoscopic intervention.

Moreover, comparisons are alsomade byplacing theLTSP
module in the encoding stage, bottleneck, and decoding stage
in the framework with the same configuration. Table 3 gives
the results which demonstrate the effectiveness of placing
the LTSP module in the decoding stage of the framework.
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Fig. 6 Comparisons of airway segmentation results on a specific case under different LTSP module configurations. The true positive voxels are
shown in red color, while the false negative voxels are shown in green color

Table 3 Comparisons (%) of placing LTSP module in the different stages in the framework on the testing set (mean±standard deviation)

Stage BD TD DSC FPR

Encoding stage 87.00 ± 12.40 83.92 ± 10.44 92.57 ± 2.67 0.02 ± 0.02

Bottleneck 87.48 ± 12.52 84.55 ± 10.18 93.34 ± 1.90 0.02 ± 0.01

Decoding stage 90.83 ± 9.38 87.59 ± 8.71 92.95 ± 1.61 0.03 ± 0.02

The figure in bold style indicates the best performance in each metric

The quantitative results also support the theoretical knowl-
edge that the LTSP method could use more robust informa-
tion to enhance the slice feature since the feature map in the
decoding stage is integrated with the feature in the encoding
stage by skip connection.

Conclusion

This paper proposed an effective long-term slice propagation
(LTSP) method for accurate airway segmentation. Focusing
on alleviating breakage phenomenon and improving topolog-
ical connectivity, LTSP cell and dense slice propagation were
designed to fully exploit the slice continuity relationship.
Extensive experiments showed that the proposedmethod out-
performed some state-of-the-art methods by detecting more
tiny bronchi and reconstructing essential branches, which
further validates the effectiveness of its constituents and
framework design. The proposed method was also assessed
in severe cases with abnormality to validate its general-
izability. The proposed method is beneficial to extracting
topological complete airway segmentation for bronchoscopic
intervention.
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