Skip to main content

Advertisement

Log in

Automatic classification of heart failure based on Cine-CMR images

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Heart failure (HF) is a serious and complex syndrome with a high mortality rate. In clinical diagnosis, the correct classification of HF is helpful. In our previous work, we proposed a self-supervised learning framework of HF classification (SSLHF) on cine cardiac magnetic resonance images (Cine-CMR). However, this method lacks the integration of three dimensions of spatial information and temporal information. Thus, this study aims at proposing an automatic 4D HF classification algorithm.

Methods

To construct a 4D classification model, we proposed an extensional framework called 4D-SSLHF. It mainly consists of self-supervised image restoration and HF classification. The image restoration proxy task utilizes three image transformation methods to enhance the exploration of spatial and temporal information in the Cine-CMR. In the classification task, we proposed a Siamese Conv-LSTM network by combining the Siamese network and bi-directional Conv-LSTM to integrate the features of the four dimensions simultaneously.

Results

Experimental results on 184 patients from Shanghai Chest Hospital achieved an AUC of 0.8794 and an ACC of 0.8402 in the five-fold cross-validation. Compared with our previous work, the improvements in AUC and ACC were 2.89 % and 1.94 %, respectively.

Conclusions

In this study, we proposed a novel self-supervised learning framework named 4D-SSLHF for HF classification based on Cine-CMR. The proposed 4D-SSLHF can mine 3D spatial information and temporal information in Cine-CMR images well and accurately classify different categories of HF. The good classification results show our method’s potential to assist physicians in choosing personalized treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Association H, Association C, Cardiology E (2018) Chinese guidelines for the diagnosis and treatment of heart failure 2018. Chin J Cardiol 46:760–789. https://doi.org/10.3760/cma.j.issn.0253-3758.2018.10.004

    Article  Google Scholar 

  2. Mosterd A, Hoes AW (2007) Clinical epidemiology of heart failure. Heart 93(9):1137–1146. https://doi.org/10.1136/hrt.2003.025270

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang Y, Zhang J, Butler J, Yang X, Xie P, Guo D, Wei T, Yu J, Wu Z, Gao Y, Han XY, Zhang X, Wen S, Anker SD, Filippatos G, Fonarow GC, Gan T, Zhang R (2017) Contemporary epidemiology, management, and outcomes of patients hospitalized for heart failure in china: results from the china heart failure (china-hf) registry. J Cardiac Fail 23(12):868–875. https://doi.org/10.1016/j.cardfail.2017.09.014

    Article  Google Scholar 

  4. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland J, Coats A, Falk V, González-Juanatey J, Harjola VP, Jankowska EA (2016) 2016 esc guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur J Heart Fail 37(27):2129–2200. https://doi.org/10.1093/eurheartj/ehw128

    Article  Google Scholar 

  5. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Celutkiene J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, Group ESD (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 42(36):3599–3726. https://doi.org/10.1093/eurheartj/ehab368

    Article  CAS  Google Scholar 

  6. Straw S, Cole CA, McGinlay M, Drozd M, Slater TA, Lowry JE, Paton MF, Levelt E, Cubbon RM, Kearney MT, Witte KK, Gierula J (2023) Guideline-directed medical therapy is similarly effective in heart failure with mildly reduced ejection fraction. Clin Res Cardiol? Off J German Cardiac Soc 112(1):111–122. https://doi.org/10.1007/s00392-022-02053-8

  7. Alonso-Betanzos A, Bolón-Canedo V, Heyndrickx GR, Kerkhof PLM (2015) Exploring guidelines for classification of major heart failure subtypes by using machine learning. Clinical Med Insights Cardiol 9:57–71. https://doi.org/10.4137/CMC.S18746

    Article  Google Scholar 

  8. Sun L, Feng H, Ni L, Wang H, Gao D (2018) Realization of fully automated quantification of left ventricular volumes and systolic function using transthoracic 3d echocardiography. Cardiovasc Ultrasound 16(1):2. https://doi.org/10.1186/s12947-017-0121-8

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tsang W, Salgo IS, Medvedofsky D, Takeuchi M, Prater D, Weinert L, Yamat M, Mor-Avi V, Patel AR, Lang RM (2016) Transthoracic 3d echocardiographic leftheart chamber quantification usingan automated adaptive analyticsalgorithm. JACC Cardiovasc Imaging 9(7):769–782. https://doi.org/10.1016/j.jcmg.2015.12.020

    Article  PubMed  Google Scholar 

  10. Zhang J, Gajjala S, Agrawal P, Tison GH, Deo RC (2018) Fully automated echocardiogram interpretation in clinical practice. Circulation 138(16):1623–1635. https://doi.org/10.1161/CIRCULATIONAHA.118.034338

    Article  PubMed  PubMed Central  Google Scholar 

  11. Asch FM, Poilvert N, Abraham T, Jankowski M, Lang RM (2019) Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert. Circ Cardiovasc Imaging 12(9):e009,303. https://doi.org/10.1161/CIRCIMAGING.119.009303

    Article  Google Scholar 

  12. Behnami D, Luong C, Vaseli H, Girgis HYA, Abdi AH, Hawley D, Gin K, Rohling R, Abolmaesumi P, Tsang T (2019) Automatic cine-based detection of patients at high risk of heart failure with reduced ejection fraction in echocardiograms. Comput Methods Biomech Biomed Eng Imaging Vis 8:1–7. https://doi.org/10.1080/21681163.2019.1650398

    Article  Google Scholar 

  13. Jing L, Tian Y (2020) Self-supervised visual feature learning with deep neural networks: a survey. IEEE Trans Pattern Anal Mach Intell 43(11), 4037–4058. https://doi.org/10.48550/ARXIV.1902.06162

  14. Chen L, Bentley P, Mori K, Misawa K, Rueckert D (2019) Self-supervised learning for medical image analysis using image context restoration. Med Image Anal 58(11):101,539.https://doi.org/10.1016/j.media.2019.101539

  15. Zhou Z, Sodha V, Pang J, Gotway MB, Liang J (2020) Models genesis. Med Image Anal 67(101):840. https://doi.org/10.1016/j.media.2020.101840

    Article  Google Scholar 

  16. Taleb A, Loetzsch W, Danz N, Severin J, Gaertner T, Bergner B, Lippert C (2020) 3D self-supervised methods for medical imaging. Adv Neural Inf Process Syst 33:18,158–18,172. https://doi.org/10.48550/ARXIV.2006.03829

  17. Wang X, Gupta A (2015) Unsupervised learning of visual representations using videos. In: 2015 IEEE international conference on computer vision (ICCV), pp 2794–2802. https://doi.org/10.48550/ARXIV.1505.00687

  18. Ahsan U, Madhok R, Essa I (2019) Video jigsaw: Unsupervised learning of spatiotemporal context for video action recognition. In: 2019 IEEE winter conference on applications of computer vision (WACV), pp 179–189. https://doi.org/10.1109/WACV.2019.00025

  19. Misra I, Zitnick CL, Hebert M (2016) Shuffle and learn: unsupervised learning using temporal order verification. Springer, Cham pp 527–544. https://doi.org/10.1007/978-3-319-46448-0_32

  20. Wei D, Lim J, Zisserman A, Freeman WT (2018) Learning and using the arrow of time. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp 8052–8060. https://doi.org/10.1109/CVPR.2018.00840

  21. Zhong H, Wu J, Zhao W, Xu X, Hou R, Zhao L, Deng Z, Zhang M, Zhao J (2021) A self-supervised learning based framework for automatic heart failure classification on cine cardiac magnetic resonance image. In: 2021 43rd annual international conference of the ieee engineering in medicine & biology society (EMBC), pp 2887–2890. https://doi.org/10.1109/EMBC46164.2021.9630228

  22. Chopra S, Hadsell R, Lecun Y (2005) Learning a similarity metric discriminatively, with application to face verification. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 539–546. https://doi.org/10.1109/CVPR.2005.202

  23. Shi X, Chen Z, Wang H, Yeung DY, Wong Wk, Woo Wc (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: NIPS, pp 802–810

  24. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  CAS  PubMed  Google Scholar 

  25. Lam CSP, Arnott C, Beale AL, Chandramouli C, Hilfiker-Kleiner D, Kaye DM, Ky B, Santema BT, Sliwa K, Voors AA (2019) Sex differences in heart failure. Eur Heart J 40(47):3859–3868c. https://doi.org/10.1093/eurheartj/ehz835

    Article  PubMed  Google Scholar 

  26. Ceia F, Fonseca C, Mota T, Morais H, Matias F, de Sousa A, Oliveira AG, on behalf of the EPICA Investigators (2002) Prevalence of chronic heart failure in southwestern Europe: the Epica study. Eur J Heart Fail 4(4):531–539. https://doi.org/10.1016/S1388-9842(02)00034-X

Download references

Acknowledgements

This research was supported by Shanghai Hospital Development Center Clinical Science and Technology Innovation Project (SHDC12019X22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Zhong, H., Wu, J. et al. Automatic classification of heart failure based on Cine-CMR images. Int J CARS 19, 355–365 (2024). https://doi.org/10.1007/s11548-023-03028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-023-03028-4

Keywords

Navigation