Skip to main content

Advertisement

Log in

Advances in video coding for hand-held device implementation in networked electronic media

  • Survey Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

This survey addresses a number of challenges and research areas identified in real time image processing for state-of-the-art hand-held device implementation in networked electronic media. The challenges appear when having to develop and map processing algorithms not only on fading, noisy, and multi-path band limited transmission channels, but more specifically here on the limited resources available for decoding and scalable rendering on battery-limited hand-held mobile devices. Networked electronic media requires scalable video coding which in turn introduces additional degradation. These problems raise some complex issues discussed in the paper. A need to extend, modify and even create new algorithms and tools, targeting architectures, technology platforms, and design techniques as well as scalability, computational load and energy efficiency considerations has established itself as a key research area. A multidisciplinary approach is advocated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. ETSIEN 302 304: Digital Video Broadcasting (DVB); International system for handheld terminals (DVB-H), see also ETSI EN 300 744: digital video broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial DVB-T

  2. ETSITS 102 427: Digital audio broadcasting (DAB); data broadcasting—MPEG-2 TS Streaming

  3. ETSIEN 300 401: Digital audio broadcasting (DAB) to mobile, portable and fixed receivers

  4. ETSITS 102 428: Digital audio broadcasting (DAB); DMB video service; user application specification

  5. 3GPPTS 23.246: Multimedia broadcast/multicast service (MBMS); Architecture and functional description

  6. ANSI/IEEE Std. 802.11-1999 (R2003): Information technology telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements—Part 11: LAN Access control (MAC) and physical layer (PHY) specifications

  7. IEEEStd. 802.16-2004: IEEE standard for local and metropolitan area networks Part 16: Air interface for fixed broadband access systems

  8. Chen, Y., Dutour, C., Radha, H., Cohen, R., Buteau, M.: Request for the fine granular video scalability for media streaming applications. In: Contribution to 44th MPEG Meeting, Dublin, Ireland (1998)

  9. Radha, H., Chen, Y., Parthasarathy, K., Cohen, R.: Scalable Internet video using MPEG-4. Signal Process. Image Commun. 15, 95–126 (1999)

    Article  Google Scholar 

  10. Radha, H.: Fine granularity scalability: a new framework for unicast and multicast video streaming over the Internet, IP Multicast Summit 2000 (MCAST2000), San Francisco (2000)

  11. Tan, W., Zakhor, A.: Real-time internet video using error resilient scalable compression and TCP-friendly transport protocol. IEEE Trans. Multimedia 1(2), 172–186 (1999)

    Article  Google Scholar 

  12. Nguyen, D.T., Ostermann, J.: Streaming and congestion control using scalable video coding based on H.264/AVC. J. Zhejiang Univ. Sci. A 7(5), 749–754. ISSN 1009–3095 (Print); ISSN 1862-1775 (online), av. at http://www.zju.edu.cn/jzus; http://www.springerlink.com (2006)

  13. Wenger, S., Wang, Y.K., Schierl, T.: RTP payload format for SVC video, Internet engineering task force, Internet draft: draft-wenger-avt-rtp-svc-02.txt, June, 2006, expiry date December 2006, available at: http://www.ietf.org/internet-drafts/draft-wenger-avt-rtp-svc-02.txt

  14. McCanne, S., Vetterli, M., Jacobson, V.: Low-complexity video coding for receiver-driven layered multicast. IEEE J. Select. Areas Commun. 15(6), 983–1001 (1997)

    Article  Google Scholar 

  15. Wolf, W.: Building the software radio. IEEE Comput. 38(3), 87–89 (2005)

    Google Scholar 

  16. Avistaportfolio website http://www.ist-avista.org/. Links to New Media Council, Networked Electronic Media Platform, and Europe’s FP5 and FP6 projects in NAVSHP (networked audio visual systems and home platforms)

  17. SVC Requirements Specified by MPEG: JVT-N026, http://ftp3.itu.int/av-arch/jvt-site/2005_01_HongKong/JVT-N026.doc

  18. Peng, Q., Jing, J.: System-on-chip design for TV-centric home networks. In: Proceedings of IEEE Consumer Communications and Networking Conference, pp. 501–506 (2004)

  19. VLIW Architectures for Media Processors: Special Issue IEEE Signal Process. Mag. (1998)

  20. Garcia, L., Reyes, V., Barreto, D., Callicó, G.M., Bautista, T., Núñez, A.: Towards a configurable SoC MPEG-4 advanced simple profile decoder. IEE Proc. Comput. Digital Techniques (Accepted, 2006)

  21. Berekovic, M., Stolberg, H., Pirsch, P.: Multicore system-on-chip architecture for MPEG-4 streaming video. IEEE Trans. Circuit Syst. Video Technol. 12(8), 688–699 (2002)

    Google Scholar 

  22. Stabernack, B., Hübert, H., Wels, K.I.: Terminal architectures for DVB-H. In: Proceedings of. GSPx-TV to Mobile, Amsterdam (2006)

  23. Stabernack, B., Hubert, H., Wels, K.I.: A H.264 video coprocessor for mobile DVB-H terminals. IEEE International Conference On Consumer Electronics. In: Digest of Technical Papers ICCE’06, pp. 89–90. Las Vegas, 7–11 January 2006

  24. Stabernack, B., Richter, H.: Media processor architectures for mobile DVB-H terminals. In: Proceedings of. GSPx’05, Santa Clara (2005)

  25. Berekovic, M., Stolberg, H.-J., Kulaczewski, M.B., Pirsch, P.: Instruction set extensions for MPEG-4 video. J. VLSI Signal Process 23, 27–49 (1999)

    Article  Google Scholar 

  26. Berekovic, M., Stolberg, H.-J., Pirsch, P.: A programmable co-processor for MPEG-4 video. In: Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing. ICASSP’01, pp. 1021–1024 (2001)

  27. TMS320DM641/TMS320DM640 Video/Imaging Fixed Point DSPs. Data Manual. (SPRS222D Apr. 2005). http://www.focus.ti.com/lit/ds/symlink/tms320dm641.pdf

  28. Philips-Nexperia: http://www.semiconductors.philips.com/products/nexperia

  29. EquatorTechnologies: Videocentric SOCs, http://www.equator.com/productsservices/videocentricsocs.html

  30. Tung, Y.-S., Wang, S.-W., Tsai, C.-W., Yang, Y.-T., Wu, J.-L.: DSP based multi format video decoding engine for media adapter applications. IEEE Trans. Consumer Electron. 51(1), 273–280 (2005)

    Article  Google Scholar 

  31. JVT document website:http://ftp3.itu.ch/av-arch/jvt-site/

  32. Pescador, F., Sanz, C., Garrido, M.J., Santos, C., Antoniello, R.: A DSP based IP set-top box for home entertainment. In: IEEE International Conference on Consumer Electronics. Digest of Technical Papers ICCE’06, Las Vegas: pp. 271–272. 7–11 January 2006

  33. Pescador, F., Sanz, C., Garrido, M.J., Santos, C., Antoniello, R.: A DSP based IP set-top box for home entertainment. IEEE Trans. Consumer Electron. (To appear, 2006)

  34. Baschirotto, A., Campi, F., Castello, R., Cesura, G., Guerrieri, R., Lavagno, L., Lodi, A., Malcovati. P., Toma, M.: Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals. Special issue on wireless reconfigurable terminals—Part I. IEEE Circ. Syst. Mag. 6(1), 8–28 (2006)

    Google Scholar 

  35. Chang, J.-Y., Kim, W.J., Bae, Y.H., Han, J.H., Cho, H.J., Jung, H.B.: Performance analysis for MPEG-4 video codec based on On-Chip Network. ETRI J. 27(5), 497–503 (2005)

    Google Scholar 

  36. Ryu, K.K., Shin, E., Mooney, V.J.: A comparison of five different multiprocessor SoC bus architecture. In: IEEE CS Proceedings of Euromicro Symposium on Digital System Design DSD’01, pp. 202–209 (2001)

  37. Kim, S.M., Park, J.H., Park, S.M., Koo, B.T., Shin, K.S., Suh, K.B., Kim, I.K., Eum, N.W., Kim, K.S.: Hardware-software implementation of MPEG-4 video codec. ETRI J. 25(6), 489–502 (2003)

    Google Scholar 

  38. Dunlop, J., Simpson, A., Masud, S., Wylie, M., Cochrane, J., Kinkead, R.: Semiconductor IP core for ultra low power MPEG-4 video decode in system-on-silicon. In: Proceedings of ICASSP’03, Vol.II, pp. 681–684 (2003)

  39. Tan, K.H., Ghanbari, M.: Layered image coding using the DCT pyramid. IEEE Trans. Image Process. 4(4), 512–516 (1995)

    Article  Google Scholar 

  40. Sikora, T.: MPEG digital video-coding standards. IEEE Signal Process. Mag. 14(5), 82–100 (1997)

    Article  Google Scholar 

  41. Li, W.: Overview of fine granularity scalability in MPEG-4 video standard. IEEE Trans. Circ. Syst. Video Technol. 11(3), 301–317 (2001)

    Article  Google Scholar 

  42. Taubman, D., Zakhor, A.: Multirate 3-D subband coding of video. IEEE Trans. Image Process. 3(5), 572–588 (1994)

    Google Scholar 

  43. Taubman, D.: Successive refinement of video: fundamental issues, past efforts and new directions. In: Proceedings of International Symposium on Visual Communication And Image Processing. Vol. 5150 pp. 791–805 (2003)

  44. Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image coding using wavelet transforms. IEEE Trans. Image Process. 1(2), 205–220 (1992)

    Article  Google Scholar 

  45. Secker, A., Taubman, D.: Highly scalable video compression with scalable motion coding. IEEE Trans. Image Process. 13(8), 1029–1041 (2004)

    Google Scholar 

  46. Chaddha, N., Gupta, A.: A framework for live multicast of video streams over the internet. In: Proceedings of IEEE International Conference on Image Processing, Vol. 1, pp. 1–4. 16–19. September 1996

  47. Cagnazzo, M., Delfino, F., Vollero, L., Zinicola, A.: Trading off quality and complexity for a HVQ-based video codec on portable devices. Elsevier Vis. Commun. Image. Represent. 17(3), 564–572 (2006)

    Article  Google Scholar 

  48. Luthra, A., Sullivan, G.J., Wiegand, T.: Special issue on the H.264/AVC video coding standard. IEEE Trans. Circ. Syst. Video Technol. 13(7), (2003)

  49. JVT-SVC http://www.chiariglione.org/mpeg/meetings/klagenfurt06/atagenda.htm

  50. MPEG-2 ISO/IEC 13818 http://www.chiariglione.org/MPEG/technologies/mp02-vid/index.htm

  51. MPEG-4 ISO/IEC 14496–2: Information technology—coding of audio visual objects. Part 2: visual (2001)

  52. Cagnazzo, M., Andre, T., Antonini, M., Barlaud, M.: A smoothly scalable and fully JPEG2000-compatible video coder. In: Proceedings of IEEE Workshop on Multimedia Signal Processing, Siena, pp. 91–94 (2004)

  53. Schwarz, H., Marpe, D., Wiegand, T.: MCTF and scalability extension of H.264/AVC. In: Proceedings of PCS’04, San Francisco (2004)

  54. Schwarz, H., Hinz, T., Kirchhoffer, H., Marpe, D., Wiegand, T.: Technical description of the HHI proposal for SVC CE1. ISO/IEC JTC1/SC29/WG11, Doc. m11244, Palma de Mallorca, Spain (2004)

  55. ITU-T. Recommendation H.264 & ISO/IEC 14496-10 AVC: Advanced Video Coding For Generic Audiovisual Services. (version 1: 2003, version 2: 2004) version 3 (2005)

  56. Wiegand, T., Sullivan, G.J., Bjøntegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circ. Syst. Video Technol. 13(7), 560–576 (2003)

    Google Scholar 

  57. Reichel, J., Schwarz, H., Wien, M. (eds.) : Scalable video coding—working draft 1. Joint video team (JVT), Doc. JVT-N020, Hong Kong, (2005)

  58. Wiegand, T., Schwarz, H., Joch, A., Kossentini, F., Sullivan, G.J.: Rate-constrained coder control and comparison of video coding standards. IEEE Trans. Circuits Syst. Video Technol. 13(7), 688–703 (2003)

    Article  Google Scholar 

  59. Reichel, J., Schwarz, H., Wien, M. (eds.) In: Busan, K.R. (ed.) Joint Scalable Video Model (JSVM) 2, Joint Video Team, Doc. JVT-O202 (2005)

  60. Schwarz, H., Marpe, D., Schierl, T., Wiegand, T.: Combined scalability support for the scalable extension of H.264/SVC. In: Proceedings of ICME’05, Amsterdam (2005)

  61. Andreopoulos, Y., van der Schaar, M., Munteanu, A., Barbarien, J., Schelkens, P., Cornelis, J.: Fully-scalable wavelet video coding using in-band motion-compensated temporal filtering. In: Proceedings of. IEEE International Conference on Acoustics, Speech And Signal Processing. ICASSP’03, Vol. III, 417–420 (2003)

  62. Andreopoulos, Y., van der Schaar, M., Munteanu, A., Barbarien, J., Schelkens, P.: Complete-to-over complete discrete wavelet transforms for fully-scalable video coding with MCTF. In: Proceedings of SPIE Visual Communications and Image Processing, Vol. 5150, pp. 719–731 (2003)

  63. van der Schaar, M., Turaga, D.: Unconstrained motion compensated temporal filtering (UMCTF) framework for wavelet video coding. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP’03, 2003, pp. III-81–III-84 (2003)

  64. Ji, X., Xu, J., Zhao, D., Wub, F.: Three-dimensional subband scalable video coding embedded with H.264/AVC codec. In: Proceedings of SPIE Visual Communications And Image Processing, Vol. 5960, pp. 201–209 (2005)

  65. Danae Web Page http://www.danae.rd.francetelecom.com/ and Medianet Website http://www.ist-ipmedianet.org/

  66. Girod, B.: Motion-compensating prediction with fractional-pel accuracy. IEEE Trans. Commun. 41, 604–612 (1993)

    Google Scholar 

  67. Xu, J., Xiong, Z., Li, S., Zhang, Y.-Q.: Memory-constrained 3-D wavelet transform for video coding without boundary effects. IEEE Trans. Circ. Syst. Video Technol. 12, 812–818 (2002)

    Article  Google Scholar 

  68. Kim, B.-J., Xiong, Z., Pearlman, W.A.: Very low bit-rate embedded video coding with 3-D set partitioning in hierarchical trees (3DSPIHT). IEEE Trans Circ. Syst. Video Technol. 8, 1365–1374 (2000)

    Google Scholar 

  69. Li, S., Xu, J., Xiong, Z., Zhang, Y.-Q.: 3D embedded subband coding with optimal truncation (3D-ESCOT). Appl. Comput. Harmon. Anal. 10, 589 (2001)

    Google Scholar 

  70. Hsiang, S., Woods, J.: Embedded image coding using zeroblocks of subband/wavelet coefficients and context modeling. In: Proceedings of ISCAS’00, Geneva, pp. 589–595 (2000)

  71. Woods, W., Lilienfield, G.: A resolution and frame-rate scalable subband/wavelet video coder. IEEE Trans. Circ. Syst. Video Technol. 1035–1044 (2001)

  72. Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl. 4(3), 245–267 (1998)

    Google Scholar 

  73. Secker, A., Taubman, D.: Motion-compensated highly scalable video compression using an adaptive 3D wavelet transform based on lifting. In: Proceedings of IEEE International Conference on Image Processing, Thessaloniki, pp. 1029–1032 (2001)

  74. Pesquet-Popescu, B., Bottreau, V.: Three-dimensional lifting schemes for motion compensated video compression. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP’01, pp. 1793–1796 (2001)

  75. Konrad, J.: Transversal versus lifting approach to motion-compensated temporal discrete wavelet transform of image sequences: equivalence and tradeoffs. In: Proceedings of SPIE Visual Communications and Image Processing (2004)

  76. Andre, T., Cagnazzo, M., Antonini, M., Barlaud, M., Bozinovic, N., Konrad, J.: (N, 0) motion-compensated lifting-based wavelet transform. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP’04, May, Vol. 3, pp. 121–124. Montreal (2004)

  77. Bozinovic, N., Konrad, J., André, T., Antonini, M., Barlaud, M.: Motion compensated lifted wavelet video coding: toward optimal motion/transform configuration. In: Proceedings of the European Signal Processing Conference (2004)

  78. Konrad, J., Bozinovic, N.: Importance of motion in motion-compensated temporal discrete wavelet transforms. In: Proceedings of SPIE Image and Video Communications and Processing (2005)

  79. Bozinovic, N., Konrad, J., Zhao, W., Vázquez, C.: On the importance of motion invertibility in MCTF/DWT video coding. In: Proceedings of the IEEE International Conference on Acoustics Speech Signal Processing ICASSP’05 (2005)

  80. Cagnazzo, M., André, T., Antonini, M., Barlaud, M.: A model-based motion compensated video coder with JPEG2000 compatibility. In: Proceedings of the IEEE International Conference on Image Processing (ICIP’04), vol. 4, Singapore, pp. 2255–2258. 24–27 October (2004)

  81. Valentin, V., Cagnazzo, M., Antonini, M., Barlaud, M.: Scalable context-based motion vector coding for video compression. In: Proceedings of Picture Coding Symposium, 2003, Saint-Malo, pp. 63–68 (2003)

  82. Andre, T., Antonini, M., Barlaud, M.: Puzzle temporal lifting for wavelet-based video coding. In: Proceedings of the IEEE International Conference on Image Processing. ICIP’05, Vol. 3, pp. 213–216 (2005)

  83. Gerek, O.N., Cetin, A.E.: Adaptive polyphase subband decomposition structures for image compression. IEEE Trans. Image Process. 9, 1649–1659 (2000)

    Google Scholar 

  84. Gerek, O.N., Cetin, A.E.: Edge adaptive lifting structures for image coding. IEEE Trans. Image Process. 15 (2006)

  85. Ohm, J.R.: Advances in scalable video coding. Proc. IEEE 93(1), 42–56 (2005)

    Article  Google Scholar 

  86. Parisot, C., Antonini, M., Barlaud, M.: 3D scan based wavelet transform and quality control for video coding. EURASIP J. Appl. Signal Process. (2003)

  87. Waveletcodec reference document and software manual. MPEG document N7334 (2005)

  88. Komatsu, T., Igarashi, T., Aizawa, K., Saito, T.: Very high resolution imaging scheme with multiple different-aperture cameras. Signal Process. Image Commun. 5, 511–526 (1993)

    Article  Google Scholar 

  89. Ghiglia, D.C.: Space-invariant deblurring given N independently blurred images of a common object. J. Opt. Soc. Am. 1, 398–402 (1984)

    Google Scholar 

  90. Kim, S.P., Su, W.-Y.: Recursive high-resolution reconstruction of blurred multiframe images. IEEE Trans. Image Process. 2(4), 534–539 (1993)

    Article  Google Scholar 

  91. Cheesman, P., Kanefsky, B., Kraft, R., Stutz, J., Hanson, R.: Super-resolved surface reconstruction from multiple images. In: Heidberg, G.R. (ed.) Maximum Entropy and Bayesian Methods. pp. 293–308. Kluwer, Dordrecht (1996)

  92. Avrin, V., Dinstein, I.: Restoration and resolution enhancement of video sequences. In: IEEE Int. Conf. Acoustics, Speech Signal Process. ICASSP’97, vol.4, pp. 2549–2552 (1997)

  93. Eggleston, P.: Quality photos from digital video: salient stills algorithms provide a missing link. Adv. Imaging 39–41 (2000)

  94. Schultz, R.R.: Super-resolution enhancement of native digital video versus digitized NTSC sequences. In: Proceedings of the 5th IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 193–197 (2002)

  95. Sale, D., Schultz, R.R., Szczerba, R.J.: Super-resolution enhancement of night vision image sequences. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, pp. 1633–1638 (2000)

  96. Gunturk, B.K., Batur, A.U., Altunbasak, Y., Hayes, M.H., Mersereau, R.M.: Eigenface-based super-resolution for face recognition. In: Proceedings of the International Conference on Image Processing, 2002, vol. 2, pp. 845–848 (2002)

  97. Goyette, J.A., Lapin, G.D., Kang, M.G., Katsaggelos, A.K.: Improving autoradiograph resolution using image restoration techniques. IEEE Eng. Med. Biol. Mag. 13(3), 571–574 (1994)

    Google Scholar 

  98. Katsaggelos, A., Galatsanos, N.: Signal Recovery Techniques for Image and Video Compression and Transmission. Kluwer, Dodrecht (1998)

  99. Chen, D., Schultz, R.R.: Extraction of high-resolution frames from MPEG image sequences. In: Proceedings of the International Conference on Image Processing ICIP’98,vol. 2, pp. 465–469 (1998)

  100. Erickson, K.J., Schultz, R.R.: MPEG-1 super-resolution decoding for the analysis of video still images. In: Proceedings of the 4th IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 13–17 (2000)

  101. Martins, B., Forchhammer, S.: A unified approach to restoration, deinterlacing and resolution enhancement in decoding MPEG-2 video. IEEE Trans. Circ. Syst. Video Technol. 12(9), 803–811 (2002)

    Article  Google Scholar 

  102. Altunbasak, Y., Patti, A.J., Mersereau, R.M.: Super-resolution still and video reconstruction from MPEG-coded video. IEEE Trans. Circ. Syst. Video Technol. 12(4), 217–226 (2002)

    Article  Google Scholar 

  103. Segall, C.A., Molina, R., Katsaggelos, A.K.: High resolution images from a sequence of low resolution and compressed observations: a review. IEEE Signal Process. Mag. 20(3), 37–48 (2003)

    Article  Google Scholar 

  104. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20 21–36 (2003)

    Article  Google Scholar 

  105. Ur, H., Gross, D.: Improved resolution from sub-pixel shifted pictures CVGIP: Graph. Models Image Process. 54, 181–186 (1992)

    Article  Google Scholar 

  106. Rajan, D., Chaudhuri, S.: Generalized interpolation and its application in super-resolution imaging. Image Vis. Comput. 19, 957–969 (2001)

    Article  Google Scholar 

  107. Stark, H., Oskoui, P.: High-resolution image recovery from image-plane arrays, using convex projections. J. Opt. Soc. Am. A6, 1715–1726 (1989)

    Article  Google Scholar 

  108. Segall, C.A., Molina, R., Katsaggelos, A.K.: High-resolution images from low resolution compressed video. IEEE Signal Process. 20, 37–48 (2003)

    Article  Google Scholar 

  109. Schultz, R.R., Meng, L., Stevenson, R.L.: Subpixel motion estimation for super-resolution image sequence enhancement. J. Vis. Commun. Image Represent. 9, 38–50 (1998)

    Article  Google Scholar 

  110. López, S., López, J.F., Sarmiento, R.: A high quality/low computational cost technique for block matching motion estimation. In: Proceedings Design, Automation and Test in Europe DATE’05, Munich (2005)

  111. López, S., López, J.F., Sarmiento, R.: Cost adaptive motion estimation strategy for high performance video encoders. IEE Electron. Lett. (IEE, UK) 41(4), 182–183 (2005)

    Article  Google Scholar 

  112. Callicó, G.M., López, S., Peset, R., Sethuraman, R., Núñez, A., López, J.F., Marrero, M., Sarmiento, R.: Practical considerations for real-time super-resolution implementation techniques over video coding platforms. In: Proceedings of SPIE Microtechnologies for the New Millennium, Vol. 5837, Seville, pp. 613–627 (2005)

  113. Callicó, G.M., López, S., Peset-Llopis, R., Sethuraman, R., López, J.F., Sarmiento, R., Núñez, A.: Low-cost implementation of a super-resolution algorithm for real-time video applications. In: Proceedings of IEEE International Symposium on Circuits and Systems ISCAS’05, pp. 6130–6133 (2005)

  114. Callicó, G.M., Peset-Llopis, R., López, S., López, J.F., Núñez, A., Sethuraman, R., Sarmiento, R.: Low-cost super-resolution algorithms implementation over a HW/SW video compression platform. EURASIP J. Appl. Signal Process. Special issue on super-resolution (to appear, 2006)

  115. Barreto, D., Callicó, G.M., López, S., García, L., Núñez, A.: Real-time super-resolution over video sequences. In: Proceedings of SPIE Microtechnologies for the new Millennium, vol. 5837, Seville, pp. 628–637 (2005)

  116. Barreto, D., Alvarez, L.D., Abad, J.: Motion estimation techniques in super-resolution image reconstruction: a performance evaluation. In: Proceedings of the International Workshop Virtual Observatory: Plate Content Digitalization, Archive Mining and Image Sequence Processing, pp. 254–268, 27–30 (2006)

  117. Barreto, D., Alvarez, L.D., Molina, R., Katsaggelos, A.K., Callicó, G.M.: Region-based super-resolution for compression, Multidimensional Systems and Signal Processing. In: Special Issue on papers presented at the International Conference in super-resolution, Hong Kong (accepted for publication) (2006)

  118. Jachalsky, J., Wahler, M., Pirsch, P., Capperon, S., Gehrke, W., Kruijtzer, W., Núñez, A.: A core for ambient and mobile intelligent imaging applications. In: Proceedings of IEEE International Conference on Multimedia and Expo ICME’03, 2003, vol. 2, pp. II-1–4, see also Camellia project Web Page http://www.iuma.ulpgc.es/camellia. Baltimore, 6–9 July 2003

  119. Callicó, G.M., Núñez, A., Llopis, R.P., Sethuraman, R., de Beeck, M.O.: A low-cost implementation of super-resolution based on a video encoder. In: Proceedings IEEE 28th Annual Conference of the Industrial Electronics Society, vol.2, pp. 1439–1444 (2002)

  120. Reyes, V., Kruijtzer, W., Bautista, T., Alkadi, G., Núñez, A.: A Unified System-Level Modeling and Simulation Environment for MPSoC design: MPEG-4 Decoder Case Study. In: Proceedings of Design Automation and Test in Europe Conference DATE’06 (2006)

Download references

Acknowledgments

The author thanks all members of the research teams in the Camellia and ARTEMI projects, in particular G. M. Callicó, T. Bautista, P. P. Carballo, V. Reyes, D. Barreto, L. García and P. Hernández, for their direct contributions to the results shown in the figures of this survey, and for the many ideas shared with them. Support provided by project TIC2003-09687-C02-02 of National Research Plan is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Núñez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Núñez, A. Advances in video coding for hand-held device implementation in networked electronic media. J Real-Time Image Proc 1, 9–23 (2006). https://doi.org/10.1007/s11554-006-0010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-006-0010-0

Keywords

Navigation