Skip to main content

Advertisement

Log in

Fast cross-spectral image registration using new robust correlation

  • Special Issue
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

In this paper, we explore a new correlation technique for cross-spectral image registration. The proposed technique matches the orientation feature of the second derivatives while making use of a statistical robust M estimator. Furthermore, it takes advantage of Fourier and multi-resolution techniques to reduce the complexity of spatial correlation. Simulation results show that our proposed approach gives more accurate results than the mutual information, and the normalized cross-correlation with prefiltering in terms of speed and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schowengerdt, R.A.: Remote sensing models for image processing. Academic, San Diego (1997)

  2. Brooks, R.R., Iyengar, S.S.: Multi-sensor fusion: fundamentals and applications with software. Prentice-Hall, Upper Saddle River (1998)

  3. Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Med. Image Anal. 2(1), 1–36 (1998)

    Google Scholar 

  4. Bresler, Y., Merhav, S.J.: Recursive image registration with application to motion estimation. IEEE Trans. Acoust. 35, 70–85 (1987)

    Google Scholar 

  5. Yang, Z., Cohen, F.S.: Image registration and object recognition using affine invariants and convex hulls. IEEE Trans. Image Process. 8, 934–946 (1999)

    Google Scholar 

  6. Townshend, J.R.G., Justice, C.O., Gurney, C., McManus, J.: The impact of misregistration on change detection. IEEE Trans. Geosci. Remote Sens. 30, 1054–1060 (1992)

    Google Scholar 

  7. Glasbey, C.A., Mardia, K.V.: A review of image warping methods. J. Appl. Stat. 25, 155–171 (1998)

    Google Scholar 

  8. Althof, R.J., Wind, M.G.J., Dobbins III, J.T.: A rapid and automatic image registration algorithm with subpixel accuracy. IEEE Trans. Med. Imaging 16(3), 308–316 (1997)

  9. Can, A., Stewart, C.V., Roysam, B.: Robust hierarchical algorithm for constructing a mosaic from images of the curved human retina. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 286–292 (1999)

  10. Irani, M., Anandan, P.: All about direct methods. In: Triggs, W., Zisserman, A. Szeliski, R. (eds.) Proceedings of the International Workshop on Vision Algorthims, pp 267–277 (1999)

  11. Kuglin, C.D., Hines, D.C.: The phase correlation image alignment method. In: Proceedings of the IEEE International Conference on Cybernetics and Society, pp 163–165 (1975)

  12. Glasbey, C.A., Mardia, K.V.: A penalized likelihood approach to image warping. J. R. Stat. Soc. Ser. B 63, 465–514 (2001)

    Google Scholar 

  13. Djamdji, J.P., Bijaoui, A., Maniere, R.: Geometrical registration of images: the multi-resolution approach. Photogramm. Eng. Remote Sens. J. 59(5), 645–653 (1993)

    Google Scholar 

  14. Le Moigne, J.: Parallel registration of multi-sensor remotely sensed imagery using wavelet coefficients. In: Proceedings of SPIE, O/E Aerospace Sensing, Wavelet Applications, pp 432–443 (1994)

  15. Le Moigne, J.: Toward a parallel registration of multiple resolution remote sensing data. In: Proceedings of 1995 International Geoscience and Remote Sensing Symposium, pp 1011–1013 (1995)

  16. Le Moigne, J., El-Saleous, N., Vermote, E.: Iterative edge- and wavelet-based image registration of AVHRR and goes satellite imagery. In: Le Moigne, J. (ed.) Proceedings of 1997 Image Registration Workshop, vol. NASA Publication CP-1998–206 853, pp 137–146 (1997)

  17. Le Moigne, J., Zavorin, I.: An application of rotation- and translation invariant overcomplete wavelets to the registration of remotely sensed imagery. In: Proceedings of SPIE, Aerospace 1999, Wavelet Applications VI, (1999)

  18. Le Moigne, J., Zavorin, I.: Use of wavelets for image registration. In: Proceedings of SPIE Aerospace 2000, Wavelet Applications VIII, (2000)

  19. Casasent, D., Smokelin, J.S., Schaefer, R.: Optical correlation filter fusion for object detection. Opt. Eng. 33(6), 1757–1766 (1994)

    Google Scholar 

  20. De Castro, E., Morandi, C.: Registration of translated and rotated images using finite Fourier transforms. IEEE Trans. Pattern Anal. Mach. Intell. 9, 700–703 (1987)

    Google Scholar 

  21. Kim, S.P., Su, W.Y.: Subpixel accuracy image registration by spectrum cancellation. In: Proceedings of ICASSP ‘93, vol. V, pp 153–156 (1993)

  22. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. University Press, Cambridge (2001)

  23. Christmas, W.J., Kittler, J.: Petrou M structural matching in computer vision using probabilistic relaxation. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 749–764 (1995)

    Google Scholar 

  24. Viola, P., Wells, W.M.: Alignment by maximization of mutual information. In: Proceedings of Fifth International Conference on Computer Vision, pp 16–23 (1995)

  25. Wells, W.M., Viola, P., et al.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1, 35–51 (1996)

    Google Scholar 

  26. Maes, F., Coolignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Geosci. Remote Sens. 38, 1476–1478 (2000)

    Google Scholar 

  27. Thévenaz, P., Ruttimann, U.E., Unser, M.: A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998)

    Google Scholar 

  28. Thévenaz, P., Unser, M.: A pyramid approach to sub-pixel image fusion based on mutual information. In: Proceedings of 1996 IEEE International Conference on Image Processing, vol. 1, 265–268 (1996)

  29. Thévenaz, P., Unser, M.: Optimization of mutual information for multiresolution image registration. IEEE Trans. Image Process. 9, 2083–2099 (2000)

    Google Scholar 

  30. Andrews, D.F., Bickel, P.J., Hampel, F.R., Huber, P.J., Rogers ,W.H., Tukey, J.W.: Robust estimates of location: survey and advances. Princeton University press, Princeton (1972)

  31. Huber, P.: Robust Statistics. Wiley, New York (1981)

  32. Fitch, A.J., Kadyrov, A.C.W., Kittler, J.: Orientation correlation. In: British machine video conference (2002)

  33. Irani, M., Anandan, P.: Robust multi-sensor image alignment. In: Proceedings of 1998 International Conference on Computer Vision, pp 959–966 (1998)

  34. Stone H.S., Wolpov R.: Blind cross-spectral image registration using prefiltering and fourier-based translation detection. IEEE Trans. Geosci. Remote Sens. 3, 637–650 (2002)

    Google Scholar 

  35. James, S. Walker: Fast Fourier transforms. CRC, second edition (1996)

  36. http://sidb.uji.es/database.php

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Essannouni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Essannouni, L., Ibn-Elhaj, E. & Aboutajdine, D. Fast cross-spectral image registration using new robust correlation. J Real-Time Image Proc 1, 123–129 (2006). https://doi.org/10.1007/s11554-006-0016-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-006-0016-7

Keywords