Skip to main content
Log in

Algorithmic and architectural design for real-time and power-efficient Retinex image/video processing

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

This paper presents novel algorithmic and architectural solutions for real-time and power-efficient enhancement of images and video sequences. A programmable class of Retinex-like filters, based on the separation of the illumination and reflectance components, is proposed. The dynamic range of the input image is controlled by applying a suitable non-linear function to the illumination, while the details are enhanced by processing the reflectance. An innovative spatially recursive rational filter is used to estimate the illumination. Moreover, to improve the visual quality results of two-branch Retinex operators when applied to videos, a novel three-branch technique is proposed which exploits both spatial and temporal filtering. Real-time implementation is obtained by designing an Application Specific Instruction-set Processor (ASIP). Optimizations are addressed at algorithmic and architectural levels. The former involves arithmetic accuracy definition and linearization of non-linear operators; the latter includes customized instruction set, dedicated memory structure, adapted pipeline, bypasses, custom address generator, and special looping structures. The ASIP is synthesized in standard-cells CMOS technology and its performances are compared to known Digital signal processor (DSP) implementations of real-time Retinex filters. As a result of the comparison, the proposed algorithmic/architectural design outperforms state-of-art Retinex-like operators achieving the best trade-off between power consumption, flexibility, and visual quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. About 2-branch version for still gray-scale images in Sect. 2 with the enhancements discussed in Sects 3.1 and 3.2.

References

  1. Land, E., McCann, J.: Lightness and retinex theory. J. Opt. Soc. Am. 61(1), 1–11 (1971)

    Article  Google Scholar 

  2. Land, E.: An alternative technique for the computation of the designator in the retinex theory of color vision. Proc. Natl. Acad. Sci. 83, 3078–3080 (1986)

    Article  Google Scholar 

  3. Jobson, D.J., Rahman, Z., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)

    Article  Google Scholar 

  4. Ogata, M., Tsuchiya, T., Kubozono, T., Ueda, K.: Dynamic range compression based on illumination compensation. IEEE Trans. Consum. Electron. 47(3), 548–558 (2001)

    Article  Google Scholar 

  5. Rahman, Z., Jobson, D.J., Woodell, G.A., Hines, G.D.: Impact of multiscale retinex computation on performance of segmentation algorithms. In: Proceedings of the SPIE 5438: Visual Information Processing XIII, Orlando, USA, pp. 171–182 (2004)

  6. Jobson, D.J., Rahman, Z., Woodell, G.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Article  Google Scholar 

  7. Tao, L., Tompkins, R., Asari, V.K.: An illuminance-reflectance nonlinear video enhancement model for homeland security applications. In: Proceedings of the 34th Applied Imagery and Pattern Recognition Workshop, Washington DC, USA, pp. 28–35, 19–21 October (2005)

  8. Tao, L., Tompkins R., Asari, V.: An illuminance-reflectance model for nonlinear enhancement of color images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, USA, pp. 159–167 (2005)

  9. Nam, M., Rhee, P.: An efficient face recognition for variant illumination condition. In: Proceedings of the IEEE International Symposium Intelligent Signal Processing and Communication Systems (ISPACS), Seoul, Korea, pp. 111–115, 18–19 November (2004)

  10. Wang, H., Li, S.Z., Wang, Y., Zhang, J.: Self quotient image for face recognition. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), Singapore, vol. 2, pp. 1397–1400, 24–27 October (2004)

  11. Huang, J., Xie, W., Tang, L.: Detection of and compensation for shadows in colored urban aerial images. In: Proceedings of the 5th World Congress On Intelligent Control and Automation (WCICA), Hangzhou, China, vol. 4, pp. 3098–3100, 15–19 June (2004)

  12. Lee, I., Ko, H., Han, D.K.: Multiple vehicle tracking based on regional estimation in night time CCD images. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2002 (ICASSP ’02), Orlando, USA, vol. 4, pp. 3712–3715, 13–17 May (2002)

  13. Iqbal, N.: Automatic enhancement of chest radiography using-retinex processing. In: Proceedings of the International Multi Topic Conference (INMIC), Karachi, Pakistan, pp. 27–31, 27–28 December (2002)

  14. Hines, G.D., Rahman, Z., Jobson, D.J., Woodell, G.A.: DSP implementation of the retinex image enhancement algorithm. In: Proceedings of the SPIE 5438: Visual Information Processing XIII, Orlando, USA, pp. 13–24 (2004)

  15. Hines, G., Rahman, Z., Jobson, D.J., Woodell, G.A., Harrah, S.D.: Real-time enhanced vision system. In: Proceedings of the SPIE 5802: Enhanced and Synthetic Vision 2005, Orlando, USA, pp. 127–134 (2005)

  16. Marsi, S., Carrato, S., Ramponi, G.: Image contrast enhancement using a recursive rational filter. In: Proceedings of the IEEE IST 2004, Stresa, pp. 29–34 (2004)

  17. Orsini, G., Ramponi, G., Carrai, P., Di Federico, R.: A modified retinex for image contrast enhancement and dynamics control. In: Proceedings of the IEEE International Conference on Image Processing, ICIP 2003, Barcelona, Spain, pp. 393–396, 14–17 September (2003)

  18. Funt, B., Ciurea, F., McCann, J.: Retinex in matlab. J. Electron. Imaging 13(1), 48–57 (2004)

    Article  Google Scholar 

  19. Ciurea, F., Funt, B.: Tuning retinex parameters. J. Electron. Imaging 13(1), 58–64 (2004)

    Google Scholar 

  20. Rahman, Z., Jobson, D.J., Woodell, G.A.: Retinex processing for automatic image enhancement. J. Electron. Imaging 13(1) (2004)

  21. NASA Langley Research Center: http://dragon.larc.nasa.gov/ (website accessed on 20 April 2007)

  22. Ramponi, G.: Polynomial and rational operators for image processing and analysis. In: Mitra, S., Sicuranza, G. (eds.) Nonlinear Image Processing. Academic, New York (2000)

    Google Scholar 

  23. Rabiner, L.R., Gold, B.: Theory and Application of Digital Signal Processing. Prentice-Hall International, Englewood Cliffs, NJ (1975)

    Google Scholar 

  24. Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. ACM Trans. Graph. 21(3), 249–256 (2002)

    Article  Google Scholar 

  25. Saponara, S., Cassiano, M., Marsi, S., Coen, R., Fanucci, L.: Cost-effective VLSI design of non linear image processing filters. In: Proceedings of the IEEE 8th Euromicro Conference—Digital System Design, Porto, Portugal, pp. 322–329 (2005)

  26. Schliebusch, O., Chattopadhyay, A., Witte, E.M., Kammler, D., Ascheid, G., Leupers, R., Meyr, H., et al.: Optimization techniques for ADL-driven RTL processor synthesys. In: Proceedings of the IEEE Workshop on Rapid Prototyping Systems, Montreal, pp. 165–171 (2005)

  27. Peters, H., Sethuraman, R, Beric, A., Meuwissen, P., Balakrishnan, S., Pinto, C., Kruijtzer, W., Ernst, F., Alkadi, G., van Meerbergen, J., de Haan, G.: Application specific instruction-set processor template for motion estimation in video applications. IEEE Trans. Circuits Syst. Video Tech. 15, 508–527 (2005)

    Article  Google Scholar 

  28. Hoffmann, A., Leupers, R., Meyr, H.: Architecture Exploration for Embedded Processors with LISA. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  29. Schliebusch, O., Chattopadhyay, A., Kammler, D., Ascheid, G., Leupers, R., Meyr, H., Kogel, T.: A framework for automated and optimized ASIP implementation supporting multiple hardware description languages. In: Proceedings of the IEEE ASP-DAC 2005, Shanghai, pp. 280–285 (2005)

Download references

Acknowledgments

The contribution to the LISA design of M. Cassiano from University of Pisa, now with STMicroelectronics, Italy, and D. Kammler, E. M. Witte, O. Schliebusch, G. Ascheid, R. Leupers and H. Meyr from ISS, RWTH Aachen University, Germany, is gratefully acknowledged. The work performed at the University of Trieste was partially supported by a research grant of the Regione Autonoma Friuli—Venezia Giulia. The work performed at the University of Pisa was partially supported by the Network of Excellence in Wireless COMmunications (NEWCOM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Saponara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saponara, S., Fanucci, L., Marsi, S. et al. Algorithmic and architectural design for real-time and power-efficient Retinex image/video processing. J Real-Time Image Proc 1, 267–283 (2007). https://doi.org/10.1007/s11554-007-0027-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-007-0027-z

Keywords

Navigation