Skip to main content

Advertisement

Log in

Performance evaluation of incremental training method for face recognition using PCA

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Relevance of ‘face recognition’ (FR) in the modern world requirements is presented as a case of human machine interaction. Physical conditions that influence the face recognition process regarding the facial features, illumination changes and viewing angles etc. are discussed. Face recognition process predominantly depends on machine perception i.e. information through an array of pixels with respect to the facial image. Details of eigenface approach through the involvement of contemporary algebraic and statistical analysis are revisited. Methodology involved in the Principal Component Analysis and advantages of exposing the data to incremental training (using PCA) are discussed. A model for the implementation of IPCA over the face databases is proposed to estimate its performance for the face recognition process. Performance of the present model is studied in the domain of Euclidean distance, decay parameter, recognition rate, eigenvalues and overall computational time. Present IPCA model administered over standard ORL, FERET databases along with that over the JNTU face database with large number of face images revealed relative performance. The merit of present IPCA is inferred through enhanced recognition rate and reduced complexity (in the algorithm), intelligent eigenvectors and lesser computational time. The results are presented in the wake of the body of data available with other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

I i :

Training image of dimension m × n

X i :

Converted training image of dimension N × 1

Ψ:

Mean image

Ψ′:

New mean image

Φ i /Φ:

Difference image

C:

Covariance matrix

μ i :

Eigenvector of C

C′:

New covariance matrix

μ i :

Eigenvector of C′

λ i :

Eigenvalue of C/L

L:

Matrix used to reduced dimension of C/C′

A:

Matrix of difference images

ρ i :

Eigenvector of L

E:

Diagonal matrix of eigenvalues of C

μ:

Matrix of Eigenvectors

Ω:

Weight matrix

Γ:

Testing image

Γ f :

Reconstructed image

w k :

Weight of an image

a i :

Element in A

∈/∈ k :

Euclidean distance

F :

Set contains training images

λ′ i :

Eigenvalue of C′

α:

Decay parameter

References

  1. Gose, E., Johnsonbaugh, R., Jost, S.: Pattern recognition and image analysis. Prentice–Hall, India (2002)

  2. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital image processing using MATLAB. Pearson (2004)

  3. Wechsler, H.: The reliable face recognition methods. System design, implementation and evaluation. Springer, Heidelberg, XIII, pp. 329, ISBN: 978-0-387-22372-8 (2007)

  4. Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: a survey. Proc IEEE 83(5), 705–740 (1995)

    Article  Google Scholar 

  5. Fromherz, T., Stucki, P., Bichsel, M.: A survey of face recognition. MML Technical Report, No.97.01, Dept. of CSE, University of Zurich, Zurich (1997)

  6. Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 34–58 (2002)

    Article  Google Scholar 

  7. Tolba, A.S., El-Baz, A.H., El- Harby, A.A.: Face recognition: a literature review. Proc. Int. J. Signal Process. 2(1), 88–103 (2005)

    Google Scholar 

  8. Kanade, T.: Picture processing system by computer complex and recognition of human faces. Dept. of information science, Kyoto University (1973)

  9. Yang, G., Huang, T.S.: Human face detection in complex background. Pattern Recognit. 27(1), 53–63 (1994)

    Article  Google Scholar 

  10. Pigeon, S., Vandendrope, L.: The M2VTS Multimodal Face Database. In: Proceedings of first international conference on audio and video based biometric person authentication (1997)

  11. Sirohey, S.A.: Human face segmentation and identification. Technical Report CAR-TR-695, Center for Automation Research, University of Maryland, College Park, MD (1973)

  12. Chetverikov, D., Lerch, A.: Multiresolution face detection. Theoretical foundations of computer vision, pp. 591–596 (1993)

  13. Graf, H.P., Chen, T., Petajan, E., Cosatto, E.: Locating faces and facial parts. In: Proceedings of the first international workshop automatic face and gesture recognition, pp. 41–46 (1995)

  14. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisher faces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI19 (7), pp. 711–720 (1997)

  15. Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. J Opt. Soc. Am. A 4(3), 519–524 (1987)

    Google Scholar 

  16. Wiskott, L., Fellous, J.M., Kruger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 19(7):775–779 (1997)

    Article  Google Scholar 

  17. Chang, K., Bowyer, K.W., Sarkar, S., Victor, B.: Comparison and combination of ear and face images in appearance-based biometrics. Proc. IEEE Trans. Pattern Anal. Mach. Intell. 25(9):1160–1165 (2003)

    Article  Google Scholar 

  18. Turk, M.A., Pentland, A.P.: Eigenfaces for recognition. J. Cognit. Neurosci. 3(1), 71–96 (1991)

    Article  Google Scholar 

  19. Pentland, A., Moghaddom, B., Starner, T.: View-based and modular eigenfaces for face recognition. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR’94) (1994)

  20. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a conventional neural-network approach. Proc. IEEE Trans. Neural Netw. 8, 98–113 (1997)

    Article  Google Scholar 

  21. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. Proc. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

    Article  Google Scholar 

  22. Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable models. Proc. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1063–1074 (2003)

    Article  Google Scholar 

  23. Deniz, O., Castrillon, M., Hernandez, M.: Face recognition using independent component analysis and support vector machines. Pattern Recognit. Lett. 24, 2153–2157 (2003)

    Article  Google Scholar 

  24. Huang, R., Pavlovic, V., Metaxas, D.N.: A hybrid face recognition method using markov random fields. ICPR (3), pp. 157–160 (2004)

  25. Wu, Z., Wang, Y., Pan, G.: 3-D face recognition using local shape map. IEEE Int. Conf. Image Proc., pp. 2003–2006 (2004)

  26. Ramanathan, N., Chellappa, R., Roy Chowdhury, A.K.: Facial similarity across age, disguise, illumination and pose. IEEE Int. Conf. Image Proc., pp. 1999–2002 (2004)

  27. Liu, C., Weschler, H.: Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition. IEEE Trans. Image Proc. 11(4), 467–476 (2002)

    Article  Google Scholar 

  28. Satyanarayana, Ch., Pratap Reddy, L.: Reduction of covariance matrix dimension in PCA for face recognition. In: Proceedings of an international conference on systemics, cybernetics and informatics (ICSCI 2006), Hyderabad, vol. 1, pp. 674–678 (2006)

  29. Satyanarayana, Ch., Pratap Reddy, L.: Dimensionality reduction in PCA for face recognition. In: Proceedings of an international conference on bioinformatics and diabetes mellitus (ICBDM 2006) 1:250–255, Visakhapatnam (2006)

  30. Murakami, H., Kumar, B.V.K.V.: Efficient calculation of primary images from a set of images. IEEE Trans. Pattern Anal. Mach. Intell., pp. 511–515 (1982)

  31. Liu, X., Chen, T., Thornton, S.M.: Eigenspace updating for non-stationary process and its application to face recognition. Technical Report AMP 02–01 (2002)

  32. Skocaj, D., Leonardis, A.: Weighted and robust incremental method for subspace learning. Proceedings of ICCV, Part 2, pp. 1494–1501 (2003)

  33. Hall, P.M., Marshall, D., Martin, R.R.: Incremental Eigenanalysis for classification. University of Wales, Cardiff, UK, Research Report, S.No. 98001 (1998)

  34. Hall, P., Marshall, D., Martin, R.: Merging and splitting Eigenspace models. IEEE Trans. Pattern Anal. Mach. Intell. 22(9), 1042–1049 (2000)

    Article  Google Scholar 

  35. Samaria, F.S.: Face recognition using hidden Markov models. PhD Thesis, University of Cambridge, 1994. In this context he collected AT &T (ORL) face database which is publicly available in http://www.uk.research.att.com

  36. Satyanarayana, Ch.: Incremental training method for face recognition: a principal component analysis approach. PhD Thesis submitted to Jawaharlal Nehru Technological University, India, (2006)

  37. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. PAMI 22(10), 1090–1104 (2000). The FERET database is publicly available in http://www.nist.gov/humanid/feret

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Satyanarayana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satyanarayana, C., Potukuchi, D.M. & Pratap Reddy, L. Performance evaluation of incremental training method for face recognition using PCA. J Real-Time Image Proc 1, 311–327 (2007). https://doi.org/10.1007/s11554-007-0031-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-007-0031-3

Keywords

Navigation