Abstract
In this paper we propose MicrelEye, a wireless video node for cooperative distributed video processing applications that involve image classification. The node is equipped with a low-cost VGA CMOS image sensor, a reconfigurable processing engine (FPGA, Microcontroller, SRAM) and a Bluetooth 100-m transceiver. It has a size of few cubic centimeters and its typical power consumption is approximately ten times less than that of typical commercial DSP-based solutions. As regards classification, a highly optimized hardware-oriented support vector machine-like (SVM-like) algorithm called ERSVM is proposed and implemented. We describe our hardware and software architecture, its performance and power characteristics. The case study considered in this paper is people detection. The obtained results suggest that the present technology allows for the design of simple intelligent video nodes capable of performing classification tasks locally.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11554-007-0048-7/MediaObjects/11554_2007_48_Fig1_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11554-007-0048-7/MediaObjects/11554_2007_48_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11554-007-0048-7/MediaObjects/11554_2007_48_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11554-007-0048-7/MediaObjects/11554_2007_48_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11554-007-0048-7/MediaObjects/11554_2007_48_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11554-007-0048-7/MediaObjects/11554_2007_48_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11554-007-0048-7/MediaObjects/11554_2007_48_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11554-007-0048-7/MediaObjects/11554_2007_48_Fig8_HTML.jpg)
Similar content being viewed by others
References
Culler, D., Estrin, D., Srivastava, M.: Overview of sensor networks. IEEE Comput. 37(8), 41–49 (2004)
Feng, J., Koushanfar, F., Potkonjak, M. System-architectures for sensor networks issues, alternatives, and directions. In: IEEE International Conference on Computer Design (ICCD) (2002)
Raja, K., Daskalopoulos, I., Diall, H., Hailes, S., Torfs, T.: Sensor cubes: a modular, ultra-compact, power-aware platform for sensor networks. In: International Conference on Information Processing in Sensor Networks (IPSN SPOTS) (2006)
Koguta, G., Blackburn, M., Everett, H.R.: Using video sensor networks to command and control unmanned ground vehicles. AUVSI Unmanned Systems in International Security (USIS) (2003)
Magli, E., Mancin, M., Merello, L.: Low-complexity video compression for wireless sensor networks. In: IEEE International Conference on Multimedia and Expo (ICME) (2003)
Diehl, C.P.: Toward efficient collaborative classification for distributed video surveillance. PhD Thesis, Carnegie Mellon University (2000)
Lipton, A.J., Heartwell, C.H., Haering, N., Madden, D.: Automated video protection, monitoring and detection. IEEE Aerosp. Electron Syst. Mag. 18, 3–18 (2003)
Rabaey, J.M., Hammer, M.J., Da Silva, J.L.: Picoradio supports ad-hoc ultra low-power wireless networking. IEEE Comput. 33(7), 42 (2000)
Ratha, N.K., Jain, A.K.: Computer vision algorithms on reconfigurable logic arrays. IEEE Comput. 10(1), 29–43 (1999)
MacLean, W.: An evaluation of the suitability for fpgas for embedded vision systems. In: IEEE Computer Vision and Pattern Recognition Conference (1999)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)
Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)
Feng, W.C., Code, B., Kaiser, E., Shea, M., Bavoil, L.: Panoptes: scalable low-power video sensor networking technologies. In: Proceedings of the ACM International Multimedia Conference, pp. 562–571. TeX Users Group, Berkeley (2003)
Margi, C.B., Lu, X., Zhang, G., Stanek, G., Manduchi, R., Obraczka, K.: Meerkats: a power-aware, self-managing wireless camera network for wide area monitoring. In: Workshop on Distributed Smart Cameras (DSC’06) (2006)
Rahimi, M., Baer, R., Iroezi, O., Garcia, J., Warrior, J., Estrin, D., Srivastava, M.: Cyclops: in situ image sensing and interpretation in wireless sensor networks. In: The ACM Conference on Embedded Networked Sensor Systems (SenSys), San Diego (2005)
Ferrigno, L., Marano, S., Paciello, V., Pietrosanto, A.: Balancing computational and transmission power consumption in wireless image sensor networks. In: IEEE International Conference on Virtual Environments, Human–Computer Interfaces, and Measurement Systems (2005)
Atmel FPSLIC. http://www.atmel.com/products/FPSLIC/
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)
Lin, K.M., Lin, C.J.: A study on reduced support vector machines. IEEE Trans. Neural Netw. 14(6), 1449–1459 (2003)
Wu, M., Schölkopf, B., Bakir, G.: Building sparse large margin classifiers. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 1001–1008 (2005)
Wu, M., Schölkopf, B., Bakir, G.: A direct method for building sparse kernel learning algorithms. J. Mach. Learn. Res. 7, 603–624 (2006)
Keerthi, S.S., Chapelle, O., DeCoste, D.: Building support vector machines with reduced classifier complexity. J. Mach. Learn. Res. 7, 1493–1515 (2006)
Anguita, D., Pischiutta, S., Ridella, S., Sterpi, D.: Feed-forward support vector machine without multipliers. IEEE Trans. Neural Netw. 17(5), 1328–1331 (2006)
Gnu project. http://www.gnu.org/
Kerhet, A., Hu, M., Leonardi, F., Boni, A., Petri, D.: Svm-like algorithms and architectures for embedded computational intelligence. Technical Report, DIT, University of Trento (2007)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported in part by Italian Ministry of Education, University, and Research under grant 2005-099215.
Rights and permissions
About this article
Cite this article
Kerhet, A., Magno, M., Leonardi, F. et al. A low-power wireless video sensor node for distributed object detection. J Real-Time Image Proc 2, 331–342 (2007). https://doi.org/10.1007/s11554-007-0048-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-007-0048-7