Skip to main content

Advertisement

Log in

FPGA implementation of a real-time biologically inspired image enhancement algorithm

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

This paper presents an FPGA implementation of a novel image enhancement algorithm, which compensates for the under-/over-exposed image regions, caused by the limited dynamic range of contemporary standard dynamic range image sensors. The algorithm, which is motivated by the attributes of the shunting center-surround cells of the human visual system, is implemented in Altera Stratix II GX: EP2SGX130GF1508C5 FPGA device. The proposed implementation, which is synthesized in an FPGA technology, employs reconfigurable pipeline, structured memory management, and data reuse in spatial operations, to render in real-time the huge amount of input data that the video signal comprises. It also avoids the use of computationally intensive operations, achieving the required specifications in terms of flexibility, timing, performance and visual quality. The proposed implementation allows real-time processing of color images with sizes up to 2.5 Mpixels, at frame rate of 25 fps. As a result, the architectural solution described in this work offers a low-cost implementation for automatic exposure correction in real-time video systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Battiato, S., Castorina, A., Mancuso, M.: High dynamic range imaging for digital still camera: an overview. J. Electron. Imaging 12, 459–469 (2003). doi:10.1117/1.1580829

    Google Scholar 

  2. Benedetti, A.: Image convolution on FPGAs: the implementation of a multi-FPGA FIFO structure. EUROMICRO’98 1, 123–130 (1998)

  3. Elad, M., Kimmel, R., Shaked, D., Keshet, R.: Reduced complexity retinex algorithm via the variational approach. J. Vis. Commun. Image Representation 14, 369–388 (2003)

    Article  Google Scholar 

  4. Funt, B., Ciurea, F., McCann, J.: Retinex in Matlab. J. Electron. Imaging 13, 48–57 (2004). doi:10.1117/1.1636761

    Article  Google Scholar 

  5. Goshtasby, A.: Fusion of multi-exposure images. Image Vis. Comput. 23, 611–618 (2005). doi:10.1016/j.imavis.2005.02.004

    Article  Google Scholar 

  6. Hines, G.D., Rahman, Z., Jobson, D.J., Woodell, G.A.: DSP implementation of the Retinex image enhancement algorithm. In: Proceedings of the SPIE 5438: Visual Information Processing XIII, Orlando, USA, pp. 13–24 (2004)

  7. Hines, G., Rahman, Z., Jobson, D.J., Woodell, G.A., Harrah, S.D.: Real-time enhanced vision system. In: Proceedings of the SPIE 5802: Enhanced and Synthetic Vision, Orlando, USA, pp. 127–134 (2005)

  8. Jobson, D., Rahman, Z., Woodell, G.: Properties and performance of a center/surround Retinex. IEEE Trans. Image Process. 6, 451–462 (1997). doi:10.1109/83.557356

    Article  Google Scholar 

  9. Jobson, D., Rahman, Z., Woodell, G.: A multi-scale Retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6, 965–976 (1997). doi:10.1109/83.597272

    Article  Google Scholar 

  10. Kimmel, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A variational framework for Retinex. Int. J. Comput. Vis. 52, 7–23 (2003). doi:10.1023/A:1022314423998

    Article  MATH  Google Scholar 

  11. Land, E.: The Retinex. Am. Sci. 2, 247–264 (1964)

    Google Scholar 

  12. Land, E.: An alternative technique for the computation of the designator in the Retinex theory of color vision. Proc. Natl. Acad. Sci. USA 83, 3078–3080 (1986). doi:10.1073/pnas.83.10.3078

    Article  Google Scholar 

  13. Meylan, L.: Tone mapping for high dynamic range images. s.l.: EPFLThesis No. 3588

  14. Meylan, L., Süsstrunk, S.: High dynamic range image rendering with a retinex-based adaptive filter. IEEE Trans. Image Process. 15, 2820–2830 (2006). doi:10.1109/TIP.2006.877312

    Article  Google Scholar 

  15. Provenzi, E., Fierro, M., Rizzi, A., De Carli, L., Gadia, D., Marini, D.: Random spray Retinex: a new retinex implementation to investigate the local properties of the model. IEEE Trans. Image Process. 16, 162–171 (2007). doi:10.1109/TIP.2006.884946

    Article  Google Scholar 

  16. Reinhard, E., Devlin, K.: Dynamic range reduction inspired by photoreceptor physiology. IEEE Trans. Vis. Comput. Graph. 11, 13–24 (2005). doi:10.1109/TVCG.2005.9

    Article  Google Scholar 

  17. Sepora, S., Fanucci, L., Marsi, S., Ramponi, G.: Algorithmic and architectural design for real-time and power-efficient Retinex image/video processing. J. Real-Time Image Process. 1, 267–283 (2007). doi:10.1007/s11554-007-0027-z

    Article  Google Scholar 

  18. Sobol, R.: Improving the Retinex algorithm for rendering wide dynamic range photographs. J. Electron. Imaging 13, 65–74 (2004). doi:10.1117/1.1636762

    Article  Google Scholar 

  19. Vonikakis, V., Andreadis, I., Gasteratos, A.: Fast centre-surround contrast modification. IET Image Process. 2, 19–34 (2008). doi:10.1049/iet-ipr200712

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Iakovidou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iakovidou, C., Vonikakis, V. & Andreadis, I. FPGA implementation of a real-time biologically inspired image enhancement algorithm. J Real-Time Image Proc 3, 269–287 (2008). https://doi.org/10.1007/s11554-008-0090-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-008-0090-0

Keywords

Navigation