Abstract
This paper presents a compressed-domain motion object extraction algorithm based on optical flow approximation for MPEG-2 video stream. The discrete cosine transform (DCT) coefficients of P and B frames are estimated to reconstruct DC + 2AC image using their motion vectors and the DCT coefficients in I frames, which can be directly extracted from MPEG-2 compressed domain. Initial optical flow is estimated with Black’s optical flow estimation framework, in which DC image is substituted by DC + 2AC image to provide more intensity information. A high confidence measure is exploited to generate dense and accurate motion vector field by removing noisy and false motion vectors. Global motion estimation and iterative rejection are further utilized to separate foreground and background motion vectors. Region growing with automatic seed selection is performed to extract accurate object boundary by motion consistency model. The object boundary is further refined by partially decoding the boundary blocks to improve the accuracy. Experimental results on several test sequences demonstrate that the proposed approach can achieve compressed-domain video object extraction for MPEG-2 video stream in CIF format with real-time performance.









Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Zhang, D.S., Lu, G.J.: Segmentation of moving objects in image sequence: a review. Circuit. Syst. Signal Process. 20(2), 143–183 (2001). doi:10.1007/BF01201137
Daras, P., Kompatsiaris, I., Grinias, I., Akrivas, G., Kollias, S., Strintzis, M.: MPEG-4 authoring tool using moving object segmentation and tracking in video shots. EURASIP J. Appl. Signal Process. 9(2), 1–18 (2003)
Luo, H.T., Eleftheriadis, A.: Model-based segmentation and tracking of head-and-shoulder video objects for real time multimedia services. IEEE Trans. Multimed. 5(3), 379–389 (2003). doi:10.1109/TMM.2003.813285
Manerba, F., Benois-Pineau, J., Leonardi, R., Mansencal, B.: Multiple moving object detection for fast video content description in compressed domain. EURASIP J. Adv. Signal Process. 231930, 1–15 (2008). doi:10.1155/2008/231930
Mezaris, V., Kompatsiaris, I., Boulgouris, N.V., Strintzis, M.G.: Real-time compressed-domain spatiotemporal segmentation and ontologies for video indexing and retrieval. IEEE Trans. Circuit Syst. Video Technol. 14(5), 606–621 (2004). doi:10.1109/TCSVT.2004.826768
Liu, Z., Lu, Y., Zhang, Z.Y.: Real-time spatiotemporal segmentation of video objects in the H.264 compressed domain. J. Vis. Commun. Image Represent. 18(3), 275–290 (2007). doi:10.1016/j.jvcir.2007.02.002
Sukmarg, O., Rao, K.R.: Fast object detection and segmentation in MPEG compressed domain. In: Proc. IEEE TENCON, vol. 2, pp. 364–368 (2000)
Babu, R.V., Ramakrishnan, K.R., Srinivasan, S.H.: Video object segmentation: a compressed domain approach. IEEE Trans. Circuit Syst. Video Tech. 14(4), 462–674 (2004). doi:10.1109/TCSVT.2004.825536
Porikli, F.: Real-time video object segmentation for MPEG encoded video sequences. In: Proc. SPIE Conf. Real Time Imaging, vol. 5297, pp. 195–203 (2004)
Zeng, W., Du, J., Gao, W., Huang, Q.M.: Robust moving object segmentation on H.264/AVC compressed video using the block-based MRF model. Real-Time Imaging 11, 290–299 (2005). doi:10.1016/j.rti.2005.04.008
Coimbra, M.T., Davies, M.: Approximating optical flow within the MPEG-2 compressed domain. IEEE Trans. Circuit Syst. Video Tech. 15(1), 103–107 (2005). doi:10.1109/TCSVT.2004.837016
You, J.Y., Liu, G.Z., Li, H.L.: A fast and robust optical flow estimation method for compressed video. J. Electron. Inf. Technol. 29(9), 2154–2157 (2007). (in Chinese)
Chen, D.B., Schultz, R.R.: Extraction of high-resolution video stills from MPEG image sequences. Proc. IEEE ICIP 2, 465–469 (1998)
Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow field. Comput. Vis. Image Underst. 63(1), 75–104 (1996). doi:10.1006/cviu.1996.0006
Rapantzikos, K.E.: Dense Estimation of optical flow in the compressed domain using robust techniques, http://www.image.ece.ntua.gr/~rap/ (2002)
Yeo, B.L., Liu, B.: On the extraction of DC sequence from MPEG compressed video. Proc. IEEE ICIP 2, 260–263 (1995)
Kobla, V., Doermann, D., Lin, K.I., Christos, F.: Compressed domain video indexing techniques using DCT and motion vector information in MPEG video. Proc. SPIE Storage Retr. Image Video Database 3022, 200–210 (1997)
Simoncelli E.P, Adelson E.H., Heeger D.J. (1991) Probability distribution of optical flow. IEEE Proc. Comput. Vis. Pattern Recognit. 310–315
Rath, G.B., Makur, A.: Iterative least squares and compression based estimation for a four-parameter linear global motion model and global motion compensation. IEEE Trans. Circ. Syst. Video Technol. 9(7), 1075–1099 (1999). doi:10.1109/76.795060
Chung, R.H., Chin, F.Y., Wong, K.Y., Chow, K.P., Luo, T., Fung, H.S.: Efficient block-based motion segmentation method using motion vector consistency. In: Proceedings of IAPR Conference on Machine Vision Applications (MVA2005), pp. 550–553 (2005)
Acknowledgments
This work is supported by the National Natural Science Foundation of China under Grant 60572127 and Hunan Provincial Natural Science Foundation under Grant 05JJ30113. The authors greatly appreciate the anonymous reviewers for their constructive comments, and Mr. Alex Asiimwe for his help to improve the English usage.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, G., Chen, W., Zhou, Q. et al. Optical flow approximation based motion object extraction for MPEG-2 video stream. J Real-Time Image Proc 4, 303–316 (2009). https://doi.org/10.1007/s11554-009-0113-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-009-0113-5