Skip to main content

Advertisement

Log in

Fast computation of pseudo Zernike moments

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

A fast and numerically stable method to compute pseudo Zernike moments is proposed in this paper. Several pseudo Zernike moment computation architectures are also implemented and some have overflow problems when high orders are computed. In addition, a correction to a previous two stage p-recursive pseudo Zernike radial polynomial algorithm is introduced. The newly proposed method that is based on computing pseudo Zernike radial polynomials through their relation to Zernike radial polynomials is found to be one and half times faster than the best algorithm reported up to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pawlak, M.L.: Image analysis by moments: reconstruction and computational aspects. Oficyna Wydawnicza Politechniki WrocLawskiej (see page 67) WrocLaw (2006)

  2. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8, 179–187 (1962)

    Google Scholar 

  3. Teh, C.-H., Chin, R.T.: On image analysis by moment invariants. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 496–513 (1988). doi:10.1109/34.3913

    Article  MATH  Google Scholar 

  4. Pang, Y.-H., Andrew Teoh, B.J., Ngo, D.C.L.: A discriminant pseudo Zernike moments in face recognition. J. Res. Pract. Inf. Technol. 38(2), 197–211 (2006)

    Google Scholar 

  5. Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980). doi:10.1364/JOSA.70.000920

    Article  MathSciNet  Google Scholar 

  6. Mukundan, R., Ong, S.-H., Lee, P.A.: Image analysis by Tchebichef moments. IEEE Trans. Image Process 10(9), 1357–1364 (2001). doi:10.1109/83.941859

    Article  MATH  MathSciNet  Google Scholar 

  7. Yap, P.-T., Paramesran, R., Ong, S.-H.: Image analysis by Krawtchouk moments. IEEE Trans. Image Process 12(11), 1367–1377 (2003). doi:10.1109/TIP.2003.818019

    Article  MathSciNet  Google Scholar 

  8. Yap, P.-T., Paramesran, R.: Eigenmoments. Pattern Recognit. 40(4), 1234–1244 (2007). doi:10.1016/j.patcog.2006.07.003

    Article  MATH  Google Scholar 

  9. Ping, Z., Ren, H., Zou, J., Sheng, Y., Bo, W.: Generic orthogonal moments: Jacobi-Fourier moments for invariant image description. Pattern Recognit. 40(4), 1245–1254 (2007). doi:10.1016/j.patcog.2006.07.016

    Article  MATH  Google Scholar 

  10. Abu Mostafa, Y.S., Psaltis, D.: Image normalization by complex moments. IEEE Trans. Pattern Anal. Mach. Intell. 7(1), 46–55 (1985)

    Article  Google Scholar 

  11. Way, C.-C., Mukandan, R., Paramesran, R.: An efficient algorithm for fast computation of pseudo-Zernike moments. Int. J. Pattern Recognit. Artif. Intell. 17(6), 1011–1023 (2003). doi:10.1142/S0218001403002769

    Article  Google Scholar 

  12. Wee, C.-Y., Paramesran, R.: Efficient computation of radial moment functions using symmetrical property. Pattern Recognit. 39, 2036–2046 (2006). doi:10.1016/j.patcog.2006.05.027

    Article  MATH  Google Scholar 

  13. Zernike, F.: Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode. Physica 1, 689–701 (1934). doi:10.1016/S0031-8914(34)80259-5

    Article  MATH  Google Scholar 

  14. Bhatia, A.B., Wolf, E.: On the circle polynomials of Zernike and related orthogonal sets. Proc. Cambridge Philos. Soc. 50, 40–53 (1954). doi:10.1017/S0305004100029066

    Article  MATH  MathSciNet  Google Scholar 

  15. Hwang, S.-K., Kim, W.-Y.: A novel approach to the fast computation of Zernike moments. Pattern Recognit. 39, 2065–2076 (2006). doi:10.1016/j.patcog.2006.03.004

    Article  MATH  Google Scholar 

  16. Mukundan, R., Ramakrishnan, K.R.: Fast computation of Legendre and Zernike moments. Pattern Recognit. 28(9), 1433–1442 (1995). doi:10.1016/0031-3203(95)00011-N

    Article  MathSciNet  Google Scholar 

  17. Way, C.-C., Paramesran, R., Mukandan, R.: A comparative analysis of algorithms for fast computation of Zernike moment. Pattern Recognit. 36, 731–742 (2003). doi:10.1016/S0031-3203(02)00091-2

    Article  MATH  Google Scholar 

  18. Al-Rawi, M.S.: Fast Zernike moments. J. Real-Time Image Process 3(2), 89–96 (2008). doi:10.1007/s11554-007-0069-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Sadiq Al-Rawi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Rawi, M.S. Fast computation of pseudo Zernike moments. J Real-Time Image Proc 5, 3–10 (2010). https://doi.org/10.1007/s11554-009-0118-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-009-0118-0

Keywords