Skip to main content
Log in

Real-time compression architecture for efficient coding in autostereoscopic displays

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Integral imaging is a promising technique for delivering high-quality three-dimensional content. However, the large amounts of data produced during acquisition prohibits direct transmission of Integral Image data. A number of highly efficient compression architectures are proposed today that outperform standard two-dimensional encoding schemes. However, critical issues regarding real-time compression for quality demanding applications are a primary concern to currently existing Integral Image encoders. In this work we propose a real-time FPGA-based encoder for Integral Image and integral video content transmission. The proposed encoder is based on a highly efficient compression algorithm used in Integral Imaging applications. Real-time performance is achieved by realizing a pipelined architecture, taking into account the specific structure of an Integral Image. The required memory access operations are minimized by adopting a systolic concept of data flow through the core processing elements, further increasing the performance boost. The encoder targets, real-time, broadcast-type high-resolution Integral Image and video sequences and performs three orders of magnitude faster than the analogous software approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Agostini, L.V., Silva, I.S., Bampi, S.: Pipelined fast 2D DCT architecture for JPEG image compression. In: Proceedings of the 14th Symposium on Integrated Circuits and Systems Design. Pirenopolis, Brazil, pp. 226–231 (2001)

  2. Celoxica, R.C.: 1000-PP development board: hardware reference, http://www.celoxica.com

  3. Chaikalis, D., Sgouros, N., Maroulis, D., Papageorgas, P.: Hardware implementation of a disparity estimation scheme for real-time compression in 3d imaging applications. J. Vis. Commun. Image Represent. 19(1), 1–11 (2008)

    Article  Google Scholar 

  4. Chen, G.B., Lu, X.N., Wang, X.G., Liu, J.L.: A complexity-scalable software-based MPEG-2 video encoder. J. Zhejiang Univ. Sci. 5(5), 572–578 (2004)

    Article  Google Scholar 

  5. Cheng, S.C., Hang, H.M.: A comparison of block-matching algorithms mapped to systolic-array implementation. IEEE Trans. Circuits Syst. for Video Technol. (CSVT) 7(5), 741–757 (1997)

    Article  Google Scholar 

  6. Kim, S.H., Kim, N.K., Ahn, S.C., Kim, H.G.: Object oriented face detection using range and color information. In: Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition, pp. 76–81 (1998)

  7. Kuhn, P.: Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4 Motion Estimation. Kluwer, Dordrecht (1999)

    MATH  Google Scholar 

  8. Lee, S., Yi, J., Kim, J.: Real-time stereo vision on a reconfigurable system. In: LNCS Embedded Computer Systems: Architectures, Modeling, and Simulation, pp. 299–307 (2005)

  9. Maroulis, D., Sgouros, N., Chaikalis, D.: FPGA-based architecture for real-time ip video and image compression. In: IEEE International Symposium on Circuits and Systems (ISCAS), May 21–24, Island of Kos, Greece (2006)

  10. Martina, M., Molino, A., Vacca, F.: Reconfigurable and low power 2D-DCT IP for ubiquitous multimedia streaming. IEEE Int. Conf. Multimedia Expo (ICME) 2, 177–180 (2002)

    Article  Google Scholar 

  11. Moshnyaga, G.V., Tamaru, K.: A memory efficient array architecture for real-time motion estimation. In: 11th International Parallel Processing Symposium (IPPS), Geneva, Switzerland, pp. 28–32 (1997)

  12. Naemura, T., Yoshida, T., Harashima, H.: 3-D computer graphics based on integral photography. Opt. Express 8(2), 255–262 (2001)

    Article  Google Scholar 

  13. O’Connor, N., Muresan, V., Kinane, A., Larkin, D., Marlow, S., Murphy, N.: Hardware acceleration architectures for MPEG-based mobile video platforms: a brief overview. In: Proceedings of the WIAMIS 2003—4th Workshop on Image Analysis for Multimedia Interactive Service, 9–11 April, London, UK (2003)

  14. Ohm, J.-R., Grüneberg, K., Hendriks, E., Izquierdo, M.E., Kalivas, D., Karl, M., Papadimatos, D., Redert, A.: A Realtime hardware system for stereoscopic videoconferencing with viewpoint adaptation. Signal Process Image Commun. 14, 147–171 (1998). doi:10.1016/S0923-5965(98)00034-4

    Article  Google Scholar 

  15. Olsson, R., Sjöström, M.: A Depth dependent quality metric for evaluation of coded integral imaging based 3D-images. In: Proceedings of the 3DTV-Conference 2007, pp. 1–4 (2007)

  16. Olsson, R., Sjöström, M., Xu, Y.: Evaluation of combined pre-processing and H.264-compression schemes for 3D integral images. In: Proceedings of the SPIE Electronic Imaging—VCIP, vol. 6508, 65082C (2007)

  17. Park, J.-H., Jung, S., Choi, H., Kim, Y., Lee, B.: Depth extraction by use of a rectangular lens array and one-dimensional elemental image modification. Appl. Opt. 43(25), 4882–4895 (2004). doi:10.1364/AO.43.004882

    Article  Google Scholar 

  18. Pennebaker, B.W., Mitchell, L.J.: JPEG Image Compression Standard. Van Nostrand Reinhold, New York (1993)

    Google Scholar 

  19. Ramachandran, S., Srinivasan, S.: FPGA implementation of a Novel, fast motion estimation algorithm for real-time video compression. In: 9th International Symposium on FPGAs, Monterey, Canada, pp. 213–219 (2001)

  20. Rao, K.R., Hwang, J.J.: Techniques and standards for image, video and audio coding. Prentice-Hall PTR, New Jersey (1996)

    Google Scholar 

  21. Rathnam, S., Slavenburg, G.: An architectural overview of the programmable multimedia processor, TM-1. In: Proceedings of the COMPCON, pp. 319–326 (1996)

  22. Reddy, V.S.K., Sengupta, S., Iatha, Y.M.: A high-level pipelined FPGA based DCT for video coding applications. In: Proceedings of the TENCON 2003 vol 2, pp. 561–565 (2003)

  23. Redert, P.A.: Acquisition and presentation of 3D video in the Panorama WP2 Hardware Chain. Rapport aan, E.G, Brussels (1997)

  24. Roma, N., Dias, T., Sousa, L.: Customisable core-based architectures for real-time motion estimation on FPGAs. In: Proceedings of the 13th International Conference on Field Programmable Logic and Applications (FPL), Lisboa - Portugal, 1–3 September, pp. 745–754 (2003)

  25. Sexton, I., Surman, P.: Stereoscopic and autostereoscopic display systems. IEEE Signal Proc. Mag. 16(3), 85–99 (1999)

    Article  Google Scholar 

  26. Sgouros, N., Andreou, A., Sangriotis, M., Papageorgas, P., Maroulis, D., Theofanous, N.: Compression of IP images for autostereoscopic 3D imaging applications. In: 3rd International Symposium on Image and Signal Processing and Analysis (ISPA), Rome, Italy, September 18–20 (2003)

  27. Sgouros, N., Kontaxakis, I., Sangriotis, M.: Effect of different traversal schemes in integral image coding. To appear in. Appl. Opt. 47(19), D28–D37 (2008). doi:10.1364/AO.47.000D28

  28. Shah, D., Dodgson, N.A.: Issues in multi-view autostereoscopic image compression. In: Proceedings of the SPIE 4297, Symposium on Stereoscopic Displays and Applications XII, pp. 307–316, (2001)

  29. Sorbier, F., Nozick, V., Biri, V.: GPU rendering for autostereoscopic displays. In: Proceedings of the 4th International Symposium on 3D Data Processing, Visualization and Transmission (3DPTV) (2008)

  30. Stern, A., Javidi, B.: Integral image compression methods. In: Proceedings of the SPIE vol. 6311, pp. 631104-1–631104-11 (2006)

  31. Torres-Huitzil, C., Arias-Estrada, M.: Real-time image processing with a compact FPGA-based systolic architecture. In: Elsevier Journal Real-Time Imaging. vol. 10, pp. 177–187 (2004)

  32. Wong, S., Stougie, B., Cotofana, S.: Alternatives in FPGA-based SAD Implementations. In: IEEE International Conference on Field Programmable Technology (FPT), Hong Kong, pp. 449–452 (2002)

  33. Wong, S., Vassiliadis, S., Cotofana, S.: A sum of absolute differences implementation in FPGA Hardware. In: 28th Euromicro Conference, Dortmund, Germany, pp. 183–186 (2002)

  34. Yeom, S., Stern, A., Javidi, B.: Compression of 3D color integral images. Opt. Express 12, 1632–1642 (2004). doi:10.1364/OPEX.12.001632

    Article  Google Scholar 

  35. Zandonai, D., Carro, L., Bampi, S., Suzin, A.A.: An architecture for MPEG motion estimation. In: VII Workshop Iberchip (IWS), Montevideo, vol. 1, pp. 90–95 (2001)

Download references

Acknowledgments

This work was realized under the framework 8.3 of the Reinforcement Programme of Human Research Manpower (“PENED 2003”-03ED656), cofunded 25% by the General Secretariat for Research and Technology, Greece, 75% by the European Social Fund and by the private sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Chaikalis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaikalis, D.P., Sgouros, N.P., Maroulis, D.E. et al. Real-time compression architecture for efficient coding in autostereoscopic displays. J Real-Time Image Proc 5, 45–56 (2010). https://doi.org/10.1007/s11554-009-0124-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-009-0124-2

Keywords

Navigation