Abstract
While modern variational methods for optic flow computation offer dense flow fields and highly accurate results, their computational complexity has prevented their use in many real-time applications. With cheap modern parallel hardware such as the Cell Processor of the Sony PlayStation 3, new possibilities arise. For a linear and a nonlinear variant of the popular combined local-global method, we present specific algorithms on this architecture that are tailored towards real-time performance. They are based on bidirectional full multigrid methods with a full approximation scheme in the nonlinear setting. Their parallel design on the Cell hardware uses a temporal instead of a spatial decomposition, and processes operations in a vector-based manner. Memory latencies are reduced by a locality-preserving cache management and optimised access patterns. For images of size 316 × 252 pixels, we obtain dense flow fields for up to 210 frames per second.




Similar content being viewed by others
References
Amiaz, T., Kiryati, N.: Piecewise-smooth dense optical flow via level sets. Int. J. Comput. Vis. 68(2), 111–124 (2006)
Arribas, P.C., Maciá, F.M.H.: FPGA implementation of the Horn & Shunk optical flow algorithm for motion detection in real time images. In: Proceedings of XIII Design of Circuits and Integrated Systems Conference, Madrid, Spain, pp. 616–621 (1998)
Bartlett, J.: Programming high-performance applications on the Cell BE processor, Part 1: An introduction to Linux on the Playstation 3. Tech. Rep. pa-linuxps3-1, IBM developerWorks. http://www.ibm.com/developerworks/linux/library/pa-linuxps3-1/ (2007). Retrieved 09-03-30
Benthin, C., Wald, I., Scherbaum, M., Friedrich, H.: Ray tracing on the CELL processor. In: Proceedings of 2006 IEEE Symposium on Interactive Ray Tracing. IEEE Computer Society Press, Salt Lake City, UT, pp. 25–23 (2006)
Bornemann, F., Deuflhard, P.: The cascadic multigrid method for elliptic problems. Numer. Math. 75, 135–152 (1996)
Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31(138), 333–390 (1977)
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optic flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) Computer Vision—ECCV 2004. Lecture Notes in Computer Science, vol. 3024, pp. 25–36. Springer, Berlin (2004)
Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., Schnörr, C.: Variational optical flow computation in real-time. IEEE Trans. Image Process. 14(5), 608–615 (2005)
Bruhn, A., Weickert, J., Kohlberger, T., Schnörr, C.: Discontinuity-preserving computation of variational optic flow in real-time. In: Kimmel, R., Sochen, N., Weickert, J. (eds.) Scale-space and PDE Methods in Computer Vision. Lecture Notes in Computer Science, vol. 3459, pp. 279–290. Springer, Berlin (2005)
Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int. J. Comput. Vis. 61(3), 211–231 (2005)
Bruhn, A., Weickert, J., Kohlberger, T., Schnörr, C.: A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. Int. J. Comput. Vis. 70(3), 257–277 (2006)
Buttari, A., Luszczek, P., Dongarra, J., Bosilca, G.: A rough guide to scientific computing on the Playstation 3. Tech. Rep. UT-CS-07-595. Innovative Computing Laboratory, University of Tennessee, Knoxville, TN (2007)
Camus, T.: Real-time quantized optical flow. Real-Time Imag. 3, 71–86 (1997)
Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In: Proceedings of 1994 IEEE International Conference on Image Processing, vol. 2. IEEE Computer Society Press, Austin, TX, pp. 168–172 (1994)
El Kalmoun, M., Köstler, H., Rüde, U.: 3D optical flow computation using a parallel variational multigrid scheme with application to cardiac C-arm CT motion. Image Vis. Comput. 25(9), 1482–1494 (2007)
Elgersma, M.R., Yuen, D.A., Pratt, S.G.: Adaptive multigrid solution of Stokes’ equation on Cell processor. In: Proceedings of American Geophysical Union Fall Meeting 2006. American Geophysical Union, San Francisco, CA, pp. IN53B-0821 (2006)
Flynn, M.J.: Some computer organizations and their effectiveness. IEEE Trans. Comput. C 21(9), 118–135 (1972)
Frohn-Schauf, C., Henn, S., Witsch, K.: Nonlinear multigrid methods for total variation denoising. Comput. Vis. Sci. 7(3–4), 199–206 (2004)
Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Dover, New York (2000)
Ghosal, S., Vaněk, P.Č.: Scalable algorithm for discontinuous optical flow estimation. IEEE Trans. Pattern Anal. Mach. Intell. 18(2), 181–194 (1996)
Glazer, F.: Multilevel relaxation in low-level computer vision. In: Rosenfeld, A. (ed.) Multiresolution Image Processing and Analysis. Springer, Berlin, pp. 312–330 (1984)
Grossauer, H., Thoman, P.: GPU-based multigrid: real-time performance in high resolution nonlinear image processing. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) Computer Vision Systems. Lecture Notes in Computer Science, vol. 5008, pp. 141–150. Springer, Berlin (2008)
Gwosdek, P., Bruhn, A., Weickert, J.: High performance parallel optical flow algorithms on the Sony Playstation 3. In: Deussen, O., Keim, D., Saupe, D. (eds.) VMV ’08: Proceedings of Vision, Modeling, and Visualization. AKA, Konstanz, Germany, pp. 253–262 (2008)
Hackbusch, W.: Multigrid Methods and Applications. Springer, New York (1985)
Hirai, T., Sasakawa, K., Kuroda, S.: Hardware of optical flow calculation and its application to tracking of moving object. Tech. Rep. 93-CV-81. Special Interest Group on Computer Vision, Information Processing Society of Japan, Tokyo, Japan (in Japanese) (1993)
Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)
Kahle, J.A., Day, M.N., Hofstee, H.P., Johns, C.R., Maeurer, T.R., Shippy, D.: Introduction to the Cell multiprocessor. IBM J. Res. Dev. 49(4), 589–604 (2005)
Kollnig, H., Nagel, H.H., Otte, M.: Association of motion verbs with vehicle movements extracted from dense optical flow fields. In: Eklundh, J.O. (ed.) Computer Vision—ECCV ’94. Lecture Notes in Computer Science, vol. 801, pp. 338–347. Springer, Berlin (1994)
Köstler, H., Stürmer, M., Freundl, C., Rüde, U.: PDE based video compression in real time. Tech. Rep. 07-11. Institut für Informatik. Univ. Erlangen-Nürnberg, Germany (2007)
Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of Seventh International Joint Conference on Artificial Intelligence. Vancouver, Canada, pp. 674–679 (1981)
Mizukami, Y., Tadamura, K.: Optical flow computation on Compute Unified Device Architecture. In: Proceedings of 14th International Conference on Image Analysis and Processing. IEEE Computer Society Press, Modena, Italy, pp. 179–184 (2007)
Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 8, 565–593 (1986)
Nesi, P.: A chip for motion estimation. Electron. Imag. 4(2), 12 (1994)
Nir, T., Bruckstein, A.M., Kimmel, R.: Over-parameterized variational optical flow. Int. J. Comput. Vis. 76(2), 205–216 (2008)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)
Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)
Srinivasan, V., Santhanam, A.K., Srinivasan, M.: Cell Broadband Engine processor DMA engines, Part 2: From an SPE point of view. Tech. Rep. pa-celldmas2. IBM developerWorks. http://www.ibm.com/developerworks/library/pa-celldmas2/ (2006). Retrieved 09-03-30
Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, San Diego (2001)
Wedel, A., Pock, T., Braun, J., Franke, U., Cremers, D.: Duality TV-L 1 flow with fundamental matrix prior. Image Vision and Computing. IEEE Computer Society Press, Auckland, New Zealand (2008)
Wei, Z., Lee, D.J., Nelson, B.E.: FPGA-based real-time optical flow algorithm design and implementation. J. Multimed. 2(5), 38–45 (2007)
Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands, P., Yelick, K.: The potential of the Cell processor for scientific computing. In: CF ’06: Proceedings of ACM Conference on Computing Frontiers, Ischia, Italy, pp. 9–20 (2006)
Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands, P., Yelick, K.: Scientific computing kernels on the Cell processor. Int. J. Parallel Program. 35(3), 263–298 (2007)
Young, D.M.: Iterative Solution of Large Linear Systems. Dover, New York (2003)
Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L 1 optical flow. In: Hamprecht F.A., Schnörr, C., Jähne, B. (eds.) Pattern Recognition. Lecture Notes in Computer Science, vol. 4713, pp. 214–223. Springer, Berlin (2007)
Zini, G., Sarti, A., Lamberti, C.: Application of continuum theory and multi-grid methods to motion evaluation from 3D echocardiography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(2), 297–308 (1997)
Acknowledgments
The authors thank the Cluster of Excellence Multimodal Computing and Interaction for partly funding this work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gwosdek, P., Bruhn, A. & Weickert, J. Variational optic flow on the Sony PlayStation 3. J Real-Time Image Proc 5, 163–177 (2010). https://doi.org/10.1007/s11554-009-0132-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-009-0132-2