Skip to main content
Log in

Real-time and low-power processing of 3D direct/inverse discrete cosine transform for low-complexity video codec

  • Special Issue
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

The 3D discrete cosine transform and its inverse (3D DCT/IDCT) extend the spatial compression properties of conventional 2D DCT to the spatio-temporal coding of 2D videos. The 3D DCT/IDCT transform is particularly suited for embedded systems needing the low-complexity implementation of both video encoder and decoder, such as mobile terminals with video-communication capabilities. This paper addresses the problem of real-time and low-power 3D DCT/IDCT processing by presenting a context-aware fast transform algorithm and a family of VLSI architectures characterized by different levels of parallelism. Implemented in submicron CMOS technology, the proposed hardware macrocells support the real-time processing of main video formats (up to high definition ones with an input rate of tens of Mpixels/s) with different trade-offs between circuit complexity, power consumption and computational throughput. Voltage scaling and adaptive clock-gating strategies are applied to reduce the power consumption versus the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. It adds new features versus previous H.263 and MPEG2 schemes such as de-blocking filter, intraframe prediction, motion estimation with multiple reference frames and variable block sizes, CABAC entropy coding.

References

  1. Gunlu, G., Bilge, H.S.: Feature extraction and discriminating feature selection for 3D face recognition. In: IEEE ISCIS 2009, pp. 44–49, Sept. 2009

  2. Fu, Y., Wang, H.: Secure spread image watermarking scheme in 3D-DCT domain. In: IEEE CISP 2009, pp. 1–4 (2009)

  3. Huang, H.-Y., Yang, C.-H., Hsu, W.-H.: A video watermarking algorithm based on pseudo 3D DCT. In: IEEE CIIP 2009, pp. 76–81 (2009)

  4. Burg, A., Keller, R., Wassner, J., Felber, N., Fichtner, W.: A 3D-DCT real-time video compression system for low complexity single-chip VLSI implementation. In: Proceedings of the Mobile Multimedia Conference (MoMuC’00), pp. 1B-5-1, Tokyo, Japan, November 2000

  5. Aggoun, A., Jalloh, I.: A parallel 3D DCT architecture for the compression of integral 3D images. In: IEEE ICECS’01, pp. 229–232 (2001)

  6. Zaharia, R., Aggoun, A., McCormick, M.: Adaptive 3D-DCT compression algorithm for continuous parallax 3D integral imaging. Signal. Process. Image. Commun. 17(3), 231–242 (2002)

    Google Scholar 

  7. Jalloh, I., et al.: A 3D DCT architecture for compression of integral 3D images. In: IEEE SIPS’00, pp. 238–244

  8. Bakr, M., Salama, A.: Implementation of 3D-DCT based video encoder/decoder system. In: IEEE MWSCAS’02, pp. 13–16

  9. Chan, R., Lee, M.: 3D-DCT quantization as compression technique for video sequences. In: IEEE VSMM’97, pp. 188–196

  10. Li, J., Takala, J., Gabbouj, M., Chen, H.: Variable temporal length 3D DCT-DWT based video coding. In: IEEE ISPCAS 2007, pp. 506–509 (2007)

  11. Tai, S.-C., Wu, Y.-G., Lin, C.-V.: An adaptive 3-D discrete cosine transform coder for medical image compression. IEEE. Trans. Inf. Technol. Biomed. 4(3), 259–263 (2000)

    Google Scholar 

  12. Fryza, T., Hanus, S.: Relation between character of real video sequences and 3D-DCT compression. In: EURASIP Conf. on Video/Image Proc. and Multimedia Comm., pp. 107–112 (2003)

  13. Chan, Y.-L., Siu, W.-C.: Variable temporal length 3-D discrete cosine transform coding. IEEE. Trans. Image. Proc. 6(5), 758–763 (1997)

    Google Scholar 

  14. Konrad, J., Bozinovic, N.: Interpretation of uniform translational image motion: DCT versus FT. In: IEEE. ICIP’02, pp. 281–284

  15. Bozinovic, N., Konrad, J.: Scan order and quantization for 3D-DCT coding. In: SPIE VCIP’03

  16. Westwater, R., Furht, B.: Real-Time Video Compression: Techniques and Algorithms. Kluwer, Norwell (1996)

  17. Bhaskaranand, M., Gibson, J.D.: Distributions of 3D DCT coefficients for video. In: ICASSP09, pp. 793–796 (2009)

  18. Huang, H.-Y., Yang, C.-H., Hsu, W.-H.: A video watermarking algorithm based on pseudo 3D DCT. In: IEEE CIIP09, pp. 76–81 (2009)

  19. Li, J., Gabbouj, M., Takala, J., Chen, H.: Direct 3-D DCT-to-DCT resizing algorithm for video coding. In: IEEE ISPA 2009, pp. 105–110 (2009)

  20. Ouni, T., et al.: New low complexity DCT based video compression method. In: IEEE ICT’09, pp. 202–207, May 2009

  21. Bhaskaranand, M., et al.: Distributions of 3D DCT coefficients for video. In: IEEE ICASSP’09, pp. 793–796, April 2009

  22. Li, J., Gabbouj, M., Takala, J., Chen, H.: Modeling of 3-D DCT coefficients for fast video encoding. In: IEEE ISCCSP’08, pp. 634–638, March 2008

  23. Li, J., Gabbouj, M., Takala, J., Chen, H.: Simplified video coding for digital mobile devices. In: IEEE ICSP’08, pp. 1247–1250, Oct. 2008

  24. Testoni, V., et al.: Three-dimensional transforms and entropy coders for a fast embedded color video codec. In: SIBGRAPI’08, pp. 147–154, Oct. 2008

  25. Fanucci, L., et al.: A parametric VLSI architecture for video motion estimation. Integr. VLSI. J. 31(1), 79–100 (2001)

    Google Scholar 

  26. Saponara, S., et al.: Dynamic control of motion estimation search parameters for low complex H.264 video coding. IEEE. Trans. Consum. Electron. 52(1), 232–239 (2006)

    Google Scholar 

  27. Saponara, S., Denolf, K., Blanch, C., Lafruit, G., Bormans, J.: Performance and complexity co-evaluation of the advanced video coding standard for cost-effective multimedia communications. J. Adv. Signal. Process. 2004(2), 220–235 (2004)

  28. Chien, Y., Huang, Y.W., Chen, C.Y., Chen, H.H., Chen, L.G.: Hardware architecture design of video compression for multimedia communication systems. IEEE. Commun. Mag. 43, 123–131 (2005)

    Google Scholar 

  29. Takahashi, M., et al.: A 60-MHz 240-mW MPEG-4 videophone LSI with 16-Mb embedded DRAM. IEEE. J. Solid-State. Circuits. 35(11), 1713–1721 (2000)

    Google Scholar 

  30. Fanucci, L., Saletti, R., Saponara, S.: Parametrized and reusable VLSI macro cells for the low-power realization of 2-D discrete-cosine-transform. Microelectr. J. 32(12), 1035–1045 (2001)

    Google Scholar 

  31. Adjeroh, D.A., Sawant, S.D.: Error-resilient transmission for 3D DCT coded video. IEEE. Trans. Broadcast. 55(2), 178–189 (2009)

    Google Scholar 

  32. Norkin, A., Gotchev, A., Egiazarian, K., Astola, J.: Low-complexity multiple description coding of video based on 3D block transforms. EURASIP. J. Embed. Syst. 2007, 1–11 (2007)

  33. Fryza, T.: Introduction to implementation of real time video compression method. In: 15th International Conference on Systems, Signals and Image Processing, 2008. IWSSIP 2008. 25–28 June 2008, pp. 217–220

  34. Saponara, S., Fanucci, L., Terreni, P.: Low-power VLSI architectures for 3D discrete cosine transform (DCT). In: Proceedings of the 46th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS’03), vol. 3, pp. 1567–1570, Cairo, Egypt, December 2003

  35. Xanthopulous, T., Chandrakasan, A.: A low power DCT core using adaptive bit width and arithmetic activity exploiting signal correlation. IEEE. J. Solid-State. Circuits. 35(5), 740–750 (2000)

    Google Scholar 

  36. Saponara, S., et al.: Low-complexity FFT/IFFT IP hardware macrocells for OFDM and MIMO–OFDM CMOS transceivers. Microprocess. Microsyst. 33(3), 191–200 (2009)

    Google Scholar 

  37. Saponara, S., et al.: Application-specific instruction-set processor for retinex-like image and video processing. IEEE. Trans. Circuits. Syst. II. 54(7), 596–600 (2007)

    Google Scholar 

  38. Saponara, S., et al.: VLSI design investigation for low-cost, low-power FFT/IFFT processing in advanced VDSL transceivers. Microelectron. J. 34(2), 133–148 (2003)

    Google Scholar 

  39. Saponara, S., et al.: Architectural-level power optimization of microcontroller cores in embedded systems. IEEE. Trans. Ind. Electron. 54(1), 680–683 (2007)

    Google Scholar 

  40. Vitullo, F., et al.: Low-complexity link microarchitecture for mesochronous communication in networks-on-chip. IEEE. Trans. Comput. 57(9), 1196–1201 (2008)

    Google Scholar 

  41. Saponara, S., et al.: Radiation tolerant spacewire router for satellite on-board networking. IEEE. Aerosp. Electron. Syst. Mag. 22(5), 3–12 (2007)

    Google Scholar 

  42. Kang, S.-M.: Elements of low power design for integrated systems. In: IEEE International Symposium on Low Power Electronics and Design, pp. 205–210 (2003)

  43. Servais, M., de Jaeger, G.: Video compression using the three dimensional discrete cosine transform (3D DCT). In: IEEE COMSIG ‘97, pp. 27–32

Download references

Acknowledgments

The support of the VLSI systems research group-University of Pisa is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Saponara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saponara, S. Real-time and low-power processing of 3D direct/inverse discrete cosine transform for low-complexity video codec. J Real-Time Image Proc 7, 43–53 (2012). https://doi.org/10.1007/s11554-010-0174-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-010-0174-5

Keywords

Navigation