Abstract
Electrostatic halftoning is a high-quality method for stippling, dithering, and sampling, but it suffers from a high runtime. This made the technique difficult to use for most real-world applications. A recently proposed minimisation scheme based on the non-equispaced fast Fourier transform (NFFT) lowers the complexity in the particle number M from \(\mathcal{O}(M^2)\) to \(\mathcal{O}(M \log M).\) However, the NFFT is hard to parallelise, and the runtime on modern CPUs lies still in the orders of an hour for about 50,000 particles, to a day for 1 million particles. Our contributions to remedy this problem are threefold: we design the first GPU-based NFFT algorithm without special structural assumptions on the positions of nodes, we introduce a novel nearest-neighbour identification scheme for continuous point distributions, and we optimise the whole algorithm for n-body problems such as electrostatic halftoning. For 1 million particles, this new algorithm runs 50 times faster than the most efficient technique on the CPU, and even yields a speedup of 7,000 over the original algorithm.








Similar content being viewed by others
References
Appel, A.W.: An efficient program for many-body simulation. SIAM J. Sci. Stat. Comput. 6(1), 85–103 (1985)
Balzer, M., Schlömer, T., Deussen, O.: Capacity-constrained point distributions: A variant of Lloyd’s method. ACM Trans. Graph. 28(3), 86–18 (2009)
Barnes, J., Hut, P.: A hierarchical \(\mathcal{O}\) (n log n) force-calculation algorithm. Nature 324, 446–449 (1986)
Beylkin, G., Cramer, R.: A multiresolution approach to regularization of singular operators and fast summation. SIAM J. Sci. Comput. 24(1), 81–117 (2003)
Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms I. Commun. Pure Appl. Math. 44(2), 141–183 (1991)
Chang, C.W., Lin, W.C., Ho, T.C., Huang, T.S., Chuang, J.H.: Real-time translucent rendering using GPU-based texture space importance sampling. EUROGRAPHICS 27(2), 517–526 (2008)
Cook, R.L.: Stochastic sampling in computer graphics. ACM Trans. Graph. 5(1), 51–72 (1986)
Deussen, O., Hanrahan, P., Lintermann, B., Měch, R., Pharr, M., Prusinkiewicz, P.: Realistic modeling and rendering of plant ecosystems. In: Proc. SIGGRAPH ’98, ACM, New York, pp. 275–286 (1998)
Dutt, A., Rokhlin, V.: Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Comput. 14(6), 1368–1393 (1993)
Fenn, M., Steidl, G.: FMM and \(\mathcal{H}\)-matrices: A short introduction to the basic idea. Tech. Rep. TR-2002-008, Department for Mathematics and Computer Science, University of Mannheim, Germany (2002)
Fenn, M., Steidl, G.: Fast NFFT based summation of radial functions. Sampl. Theory Signal Image Process. 3(1), 1–28 (2004)
Govindaraju, NK., Lloyd, B., Dotsenko, Y., Smith, B., Manferdelli, J.: High performance discrete Fourier transforms on graphics processors. In: Proc. 2008 ACM/IEEE Conference on Supercomputing, IEEE Press, pp. 2:1–2:12 (2008)
Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)
Gregerson, A.: Implementing fast MRI gridding on GPUs via CUDA. NVidia Whitepaper. Online: http://cn.nvidia.com/docs/IO/47905/ECE757_Project_Report_Gregerson.pdf. Retrieved 11 April 2011 (2008)
Gumerov, N.A., Duraiswami, R.: Fast multipole methods on graphics processors. J. Comput. Phys. 227(18), 8290–8313 (2008)
Hackbusch, W.: A sparse matrix arithmetic based on \(\mathcal{H}\)-matrices. Part I: Introduction to \(\mathcal{H}\)-matrices. Computing 62, 89–108 (1999)
Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2(1), 84–90 (1960)
Hockney, R., Eastwood, J.: Computer simulation using particles. McGraw-Hill, New York (1981)
Kaiser, J., Schafer, R.: On the use of the Io-sinh window for spectrum analysis. IEEE Trans. Acoust. Speech Signal Process. 28(1), 105–107 (1980)
Keiner, J., Kunis, S., Potts, D.: Using NFFT 3—a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Softw. 36(4), 19–30 (2009)
Kollig, T., Keller, A.: Efficient illumination by high dynamic range images. In: Christensen P, Cohen-Or D (eds.) EGRW ’03: Proceedings of the 14th Eurographics Workshop on Rendering, Eurographics Association, Aire-la-Ville, Switzerland, pp. 45–50 (2003)
Krishnan, S., Kalé, LV.: A parallel adaptive fast multipole algorithm for n-body problems. In: Gallivan K (ed.) Proc. 1995 International Conference on Parallel Processing, CRC Press, Inc., Urbana-Champain, IL, vol 3, pp. 46–51 (1995)
Nguyen, H.: (ed.) GPU Gems 3. Addison–Wesley Professional (2007)
NVidia.: NVIDIA CUDA CUFFT Library. NVIDIA Corporation, 3rd edn. http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/CUFFT_Library_3.1.pdf. Retrieved 24 October 2010 (2010)
Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
Pharr, M., Humphreys, G.: Sampling and reconstruction, chap. 7. In: Physically Based Rendering—from Theory to Implementation. Morgan Kaufmann (2004)
Potts, D., Steidl, G., Tasche, M.: Fast Fourier transforms for non-equispaced data: A tutorial. In: Benedetto JJ, Ferreira PJSG (eds.) Modern Sampling Theory: Mathematics and Applications, Applied and Numerical Harmonic Analysis, chap 12, pp 251–274. Birkhäuser, Boston (2000)
Potts, D., Steidl, G., Nieslony, A.: Fast convolution with radial kernels at nonequispaced knots. Numer. Math. 98(2), 329–351 (2004)
Schmaltz, C., Gwosdek, P., Bruhn, A., Weickert, J.: Electrostatic halftoning. Comput. Graph. Forum 29(8), 2313–2327 (2010)
Secord A Weighted Voronoi stippling. In: Proceedings of the Second International Symposium on Non-photorealistic Animation and Rendering, ACM, New York, pp. 37–43 (2002)
Sørensen, T., Schaeffter, T., Noe, K., Hansen, M.: Accelerating the nonequispaced fast Fourier transform on commodity graphics hardware. IEEE Trans. Med. Imaging 27(4), 538–547 (2008)
Sun, X., Pitsianis, N.P.: A matrix version of the fast multipole method. SIAM Rev. 43(2), 289–300 (2001)
Surazhsky V, Alliez P, Gotsman C Isotropic remeshing of surfaces: A local parameterization approach. In: Proceedings of the 12th International Meshing Roundtable, pp. 215–224 (2003)
Teuber, T., Steidl, G., Gwosdek, P., Schmaltz, C., Weickert, J.: Dithering by differences of convex functions. SIAM J. Imaging Sci. 4(1), 79–108 (2011)
Tyrtyshnikov, E.: Mosaic-skeleton approximation. Calcolo 33, 47–57 (1996)
Ulichney, R.A.: Dithering with blue noise. Proc. IEEE 76(1), 56–79 (1988)
Wei, L.: Multi-class blue noise sampling. ACM Trans. Graph. 29(4), 79–18 (2010)
Acknowledgments
The authors thank the Cluster of Excellence ‘Multimodal Computing and Interaction’ for partly funding this work, and Thomas Schlömer from the University of Constance for providing images for comparison.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gwosdek, P., Schmaltz, C., Weickert, J. et al. Fast electrostatic halftoning. J Real-Time Image Proc 9, 379–392 (2014). https://doi.org/10.1007/s11554-011-0236-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-011-0236-3