Skip to main content
Log in

An embedded architecture for real-time object detection in digital images based on niching particle swarm optimization

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://www.xilinx.com.

References

  1. Adorni, G., Bergenti, F., Cagnoni, S., Mordonini, M.: License-plate recognition for restricted-access area control systems. In: Foresti, G. et al. (eds.) Multimedia Video-Based Surveillance Systems: Requirements, Issues and Solutions, pp. 260–271. Kluwer, Dordrecht (2000)

  2. Brits, R., Engelbrecht, A., Bergh, F.V.D.: Solving systems of unconstrained equations using particle swarm optimization. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, IEEE, 6–9 Oct 2002, Hammamet, Tunisia, vol. 3, pp. 1–6 (2002)

  3. Brits, R., Engelbrecht, A.P., van den Bergh, F.: A niching particle swarm optimizer. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution And Learning (SEAL’02), Singapore, November 2002, pp. 692–696 (2002)

  4. Cagnoni, S., Mordonini, M., Sartori, J.: Particle swarm optimization for object detection and segmentation. In: M. Giacobini, et al. (eds.) Applications of Evolutinary Computing, EvoWorkshops 2007: EvoCoMnet, EvoFIN, EvoIASP, EvoINTERACTION, EvoMUSART, EvoSTOC and EvoTransLog, Valencia, Spain, April 11–13, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4448, pp. 241–250. Springer (2007)

  5. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, (MHS ’95), Nagoya, Japan, pp. 39–43 (1995)

  6. Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing. Natural Computing Series. Springer, Berlin (2008)

  7. Ercan, M.F.: A performance comparison of PSO and GA in scheduling hybrid flow-shops with multiprocessor tasks. In: Wainwright, R.L., Haddad, H. (eds.) Proceedings of the 23rd Annual ACM Symposium on Applied Computing (SAC 2008), 16–20 March 2008, Fortaleza, Ceara, Brazil, SAC ’08, pp. 1767–1771. ACM, New York, NY, USA (2008)

  8. Farmahini-Farahani, A., Fakhraie, S.M., Safari, S.: SOPC-based architecture for discrete particle swarm optimization. In: Proceedings of the 14th IEEE International Conference on Electronics, Circuits and Systems, (ICECS 2007), 11–14 Dec 2007, Marrakech, Morocco, pp. 1003–1006. IEEE (2007)

  9. Farmahini-Farahani, A., Vakili, S., Fakhraie, S.M., Safari, S., Lucas, C.: Parallel scalable hardware implementation of asynchronous discrete particle swarm optimization. Eng. Appl. Artif. Intell. 23(2), 177–187 (2010)

    Article  Google Scholar 

  10. Herout, A., Jošth, R., Juránek, R., Havel, J., Hradiš, M., Zemčík, P.: Real-time object detection on CUDA. J. Real-Time Image Process. 6, 159–170 (2011)

    Article  Google Scholar 

  11. Hiromoto M., Sugano H., Miyamoto R.: Partially parallel architecture for Adaboost-based detection with Haar-like features. IEEE Trans. Circuits Syst. Video Technol.19(1), 41–52 (2009)

    Article  Google Scholar 

  12. Johnson, C., Venayagamoorthy, G.K., Palangpour, P.: Hardware Implementations of Swarming Intelligence—a survey. In: Proceedings of the IEEE Swarm Intelligence Symposium (SIS 2008), IEEE, 21–23 Sept 2008, St. Louis, Missouri, pp. 1–9 (2008)

  13. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks (ICNN’95), IEEE, vol. 4, pp. 1942–1948. Perth, Australia (1995)

  14. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 02), IEEE, 12–17 May 2002, Hawaii, vol. 2, pp. 1671–1676 (2002)

  15. Kókai, G., Böhner, M., Christ, T., Frühauf, H.H.: Parallel dynamic parameter adaption of adaptive array antennas based on nature inspired optimisation. J. Comput. 2(3), 63–75 (2007)

    Article  Google Scholar 

  16. Li, X.: Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2004), 26–30 June 2004, Seattle, USA, vol. LNCS3102, pp. 105–116, Springer (2004)

  17. Li, X.: A multimodal particle swarm optimizer based on fitness Euclidean-distance ratio. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007), 7–11 July 2007, London, England, pp. 78–85. ACM (2007)

  18. Li, X.: Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans. Evolut. Comput. 14(1):150–169 (2010)

    Article  Google Scholar 

  19. MacLean, W.: An evaluation of the suitability of FPGAs for embedded vision systems. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2005), IEEE, 20–26 June 2005, San Diego, USA, p. 131 (2005)

  20. Mehmood, S., Cagnoni, S., Mordonini, M., Farooq, M.: Particle swarm optimisation as a hardware-oriented meta-heuristic for image Analysis. In: Giacobini, M. et al. (eds.) Applications of Evolutionary Computing. Proceedings of EvoWorkshops 2009, pp. 369–374. Springer, Berlin (2009)

  21. Mehmood, S., Cagnoni, S., Mordonini, M., Matrella, G.: Hardware-oriented adaptation of a particle swarm optimization algorithm for object detection. In: Fanucci, L. (ed.) Proceedings of 11th Euromicro Conference on Digital System Design: Architectures, Methods and Tools (DSD 2008), 3–5 Sept 2008, Parma, Italy, pp. 904–911. IEEE (2008)

  22. Mussi, L., Bacchini, A., Cagnoni, S.: Open CL implementation of Particle Swarm Optimization: a comparison between CPU and multi-core GPU performances. In: Di Chio, C. et al. (ed.) Applications of Evolutionary Computation: Proceedings of EvoApplications 2012. LNCS, vol. 7248, pp. 406–415. Springer, Berlin (2012)

  23. Mussi, L., Daolio, F., Cagnoni, S.: Evaluation of parallel particle swarm optimization algorithms within the CUDA architecture. Inf. Sci. 181(20), 4642–4657 (2011)

    Article  Google Scholar 

  24. Mussi, L., Nashed, Y.S., Cagnoni, S.: GPU-based asynchronous Particle Swarm Optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2011), 12–16 July 2011, Dublin, Ireland, GECCO 2011, pp. 1555–1562. ACM (2011)

  25. de P. Veronese, L., Krohling, R.: Swarm’s flight: accelerating the particles using C-CUDA. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2009), 18–21 May 2009, Trondheim, Norway, pp. 3264–3270. IEEE (2009)

  26. Panda, S., Padhy, N.P.: Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Appl. Soft Comput. 8(4), 1418–1427 (2008)

    Article  Google Scholar 

  27. Parsopoulos, K.E., Vrahatis, M.N.: Modification of the particle swarm optimizer for locating all the global minima. In: Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms (ICANNGA 2001), April 2001, Prague, Czech Republic, pp. 324–327. Springer (2001)

  28. Poli, R.: Analysis of the publications on the applications of particle swarm optimisation. J. Artif. Evol. App. 2008, 3:1–3:10 (2008)

    Google Scholar 

  29. Reynolds, P., Duren, R., Trumbo, M., Marks, R.I.: FPGA implementation of Particle Swarm Optimization for inversion of large neural networks. In: Proceedings of the IEEE Swarm Intelligence Symposium (SIS 2005), IEEE, 8–10 June 2005, Pasadena, California USA, pp. 389–392 (2005)

  30. Sen, M., Corretjer, I., Haim, F., Saha, S., Bhattacharyya, S., Schlessman, J., Wolf, W.: Computer vision on FPGAs: design methodology and its application to gesture recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2005), IEEE, 20–26 June 2005, San Diego, USA, p. 133 (2005)

  31. Tewolde, G.S., Hanna, D.M., Haskell, R.E.: Accelerating the performance of particle swarm optimization for embedded applications. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2009), IEEE, 18–21 May 2009, Trondheim, Norway, pp. 2294–2300 (2009)

  32. Tewolde, G.S., Hanna, D.M., Haskell, R.E.: Multi-swarm parallel PSO: Hardware implementation. In: Proceedings of the IEEE Swarm Intelligence Symposium (SIS 2009), IEEE, 6–9 April 2009, Nashville, Tennessee, USA, SIS ’09, pp. 60–66 (2009)

  33. Wang, W.: Particle swarm optimization on GPU. http://cqse.ntu.edu.tw/cqse/gpu2009.html (2009). Presentation at the first NTU Workshop on GPU supercomputing

  34. Yang, F., Zhang, C., Sun, T.: Comparison of particle swarm optimization and genetic algorithm for HMM training. In: Proceedings of the 19th International Conference on Pattern Recognition (ICPR 2008), 8–11 Dec 2008, Tampa, Florida, USA, pp. 1–4. IEEE (2008)

Download references

Acknowledgments

The research leading to these results has received funding from the Higher Education Commission, Pakistan under the Grant agreement 041-104551Eg-084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Mehmood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehmood, S., Cagnoni, S., Mordonini, M. et al. An embedded architecture for real-time object detection in digital images based on niching particle swarm optimization. J Real-Time Image Proc 10, 75–89 (2015). https://doi.org/10.1007/s11554-012-0256-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-012-0256-7

Keywords

Navigation