Skip to main content

Advertisement

Log in

Gentle ICM energy minimization for Markov random fields with smoothness-based priors

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Coordinate descent, also known as iterated conditional mode (ICM) algorithm, is a simple approach for minimizing the energy defined by a Markov random field. Unfortunately, the ICM is very sensitive to the initial values and usually only finds a poor local minimum of the energy. A few modifications of the ICM algorithm are discussed here that ensure a more ‘gentle’ descent during the first iterations of the algorithm and that lead to substantial performance improvements. It is demonstrated that the modified ICM can be competitive to other optimization algorithms on a set of vision problems such as stereo depth estimation, image segmentation, image denoising and inpainting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alahari, K., Kohli, P., Torr, P.: Reduce, reuse & recycle: Efficiently solving multi-label MRFs. In: CVPR (2008)

  2. Barnard, S.: Stochastic stereo matching over scale. Int. J. Comput. Vis. 3(1), 17–32 (1989)

    Article  MathSciNet  Google Scholar 

  3. Besag, J.: On the statistical analysis of dirty pictures. J. R. Stat. Soc. Ser. B 48(3), 259–302 (1986)

    MATH  MathSciNet  Google Scholar 

  4. Birchfield, S., Tomasi, C.: A pixel dissimilarity measure that is insensitive to image sampling. IEEE Trans Pattern Anal Mach Intell 20(4):401–406 (1998)

    Article  Google Scholar 

  5. Bishop, C.: Pattern recognition and machine learning. Springer, Berlin (2006)

  6. Boykov, Y., Veksler, O., Zabih, R.: (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239

    Article  Google Scholar 

  7. Chou, P., Brown, C.: The theory and practice of Bayesian image labeling. Int J Comput Vision 4:185–210 (1990)

    Article  Google Scholar 

  8. Fletcher, R.: (2000) Practical methods of optimization. Wiley, New York

  9. Guan, Y., Chen, W., Liang, X., Ding, Z., Peng, Q.: Easy matting: a stroke based approach for continuous image matting. J Comput Graphics Forum 25(3):567–576 (2006)

    Article  Google Scholar 

  10. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Trans Pattern Anal Mach Intell 28(10):1568–1583 (2006)

    Article  Google Scholar 

  11. Komodakis, N., Tziritas, G., Paragios, N.: Performance vs computational efficiency for optimizing single and dynamic MRFs: setting the state of the art with primal dual strategies. Comput Vision Image Underst 112(1):14–29 (2008)

    Article  Google Scholar 

  12. Komodakis, N., Tziritas, G.: Image completion using efficient Belief Propagation via priority scheduling and dynamic pruning. IEEE Trans Image Process 16(11):2649–2661 (2007)

    Article  MathSciNet  Google Scholar 

  13. Li, S.: Markov Random Field Modeling in Computer Vision. Springer, Berlin (1995)

  14. Felzenszwalb, P.F., Huttenlocher, D.: Efficient belief propagation for early vision. Int J Comput Vision 70(1):41–54 (2006)

    Article  Google Scholar 

  15. Ogawara, K.: Approximate belief propagation by hierarchical averaging of outgoing messages. In: ICPR (2010)

  16. Rother C., Kolmogorov V., Blake A.: “‘GrabCut”’-interactive foreground extraction using iterated graph cuts. ACM Trans Graphics 23(3):309–314 (2004)

    Article  Google Scholar 

  17. Rother, C., Kolmogorov, V., Lempitsky, V., Szummer, M.: Optimizing binary MRFs via extended roof duality. In: CVPR (2007)

  18. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother C.: A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Trans Pattern Anal Mach Intell 30(6):1068–1080 (2008)

    Article  Google Scholar 

  19. Yang, Q., Wang, L., Ahuja, N.: A Constant-Space Belief Propagation Algorithm for Stereo Matching. In: CVPR (2010)

  20. Yedidia, J., Freeman, W., Weiss, Y.: Generalized Belief Propagation. In: NIPS (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Zivkovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zivkovic, Z. Gentle ICM energy minimization for Markov random fields with smoothness-based priors. J Real-Time Image Proc 11, 235–246 (2016). https://doi.org/10.1007/s11554-012-0308-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-012-0308-z

Keywords

Navigation