Skip to main content
Log in

FPGA-based fast computation of gray-level morphological granulometries

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Morphological granulometries constitute one of the most useful and versatile image analysis techniques applied to a wide range of tasks, from size distribution of objects, to feature extraction and to texture characterization in industrial and research applications where high-performance instrumentation and online signal processing are required. Since granulometries are based on sequences of openings with structuring elements (SEs) of increasing size, they are computational demanding on non-specialized hardware. In this paper, a pipelined hardware architecture for fast computation of gray-level morphological granulometries is presented, centered around two systolic-like processing arrays able to process with flat SEs of different shapes and sizes. To validate the proposed scheme, the architecture was modeled, simulated and implemented into a field programmable gate array. Implementation results show that the architecture is able to compute particle size distribution on 512 × 512 sized images with flat non-rectangular SEs of up to 51 × 51, in around 60 ms at a clock frequency of 260 MHz. It is shown that a speed up over two orders of magnitude is obtained compared to a naive software implementation. The architecture performance compares favorably to similar hardware architectural schemes and to optimized high-performance graphical processing units-based implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bartovský, J., Dokládal, P., Dokládalová, E., Georgiev, V.: Parallel implementation of sequential morphological filters. J. Real-Time Image Process. (2011). doi:10.1007/s11554-011-0226-5

  2. Chien, S.Y., Ma, S.Y., Chen, L.G.: Partial-result-reuse architecture and its design technique for morphological operations with flat structuring elements. IEEE Trans. Circuits Syst. Video Technol. 15(9), 1156–1169 (2005). doi:10.1109/TCSVT.2005.852622

    Article  Google Scholar 

  3. Déforges, O., Normand, N., Babel, M.: Fast recursive grayscale morphology operators: from the algorithm to the pipeline architecture. J. Real-Time Image Process. 8(2), 143–152 (2013). doi:10.1007/s11554-010-0171-8

  4. Devaux, M.F., Bouchet, B., Legland, D., Guillon, F., Lahaye, M.: Macro-vision and grey level granulometry for quantification of tomato pericarp structure. Postharvest Biol. Technol. 47(2), 199–209 (2008). doi:10.1016/j.postharvbio.2007.06.017

    Article  Google Scholar 

  5. Dougherty, E., Lotufo, R.: Hands-on Morphological Image Processing. SPIE Press, Bellingham (2003)

  6. Gil, J., Kimmel, R.: Efficient dilation, erosion, opening, and closing algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1606–1617 (2002). doi:10.1109/TPAMI.2002.1114852

    Article  MATH  Google Scholar 

  7. Gil, J., Werman, M.: Computing 2-d min, median, and max filters. IEEE Trans. Pattern Anal. Mach. Intell. 15(5), 504–507 (1993). doi:10.1109/34.211471

    Article  Google Scholar 

  8. Hedberg, H., Kristensen, F., Owall, V.: Low-complexity binary morphology architectures with flat rectangular structuring elements. IEEE Trans. Circuits Syst. I Regul. Pap. 55(8), 2216–2225 (2008). doi:10.1109/TCSI.2008.918140

    Article  MathSciNet  Google Scholar 

  9. van Herk, M.: A fast algorithm for local minimum and maximum filters on rectangular and octagonal kernels. Pattern Recogn. Lett. 13(7), 517–521 (1992). doi:10.1016/0167-8655(92)90069-C

    Article  Google Scholar 

  10. Karas, P., Morard, V., Bartovský, J., Grandpierre, T., Dokládalová, E., Matula, P., Dokládal, P.: Gpu implementation of linear morphological openings with arbitrary angle. J. Real-Time Image Process. 1–15. doi:10.1007/s11554-012-0248-7

  11. Kim, H., Maruta, R., Huanca, D., Salcedo, W.: Correlation-based multi-shape granulometry with application in porous silicon nanomaterial characterization. J. Porous Mater. 1–11. http://dx.doi.org/10.1007/s10934-012-9607-9

  12. Ko, S.J., Morales, A., Lee, K.H.: A fast implementation algorithm and a bit-serial realization method for grayscale morphological opening and closing. IEEE Trans. Signal Process. 43(12), 3058–3061 (1995). doi:10.1109/78.476966

    Article  Google Scholar 

  13. Ljungqvist, M.G., Nielsen, M.E., Ersboll, B.K., Frosch, S.: Image analysis of pellet size for a control system in industrial feed production. PLoS One 6(10), e26,492 (2011). doi:10.1371/journal.pone.0026492

  14. Maragos, P.: Pattern spectrum and multiscale shape representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 701–716 (1989). doi:10.1109/34.192465

    Google Scholar 

  15. Matheron, G.: Random Sets and Integral Geometry, vol. 1. Wiley, New York (1975)

  16. Mavilio, A., Fernández, M., Trivi, M., Rabal, H., Arizaga, R.: Characterization of a paint drying process through granulometric analysis of speckle dynamic patterns. Signal Process. 90(5), 1623–1630 (2010). doi:10.1016/j.sigpro.2009.11.010

    Google Scholar 

  17. Morard, V., Dokladal, P., Decenciere, E.: One-dimensional openings, granulometries and component trees in o(1) per pixel. IEEE J. Sel. Topics Signal Process. 6(7), 840–848 (2012)

    Google Scholar 

  18. Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, Inc., Orlando (1983)

  19. Shih, F.Y.: Image processing and mathematical morphology fundamentals and applications. CRC Press, Boca Raton (2009)

  20. Thurley, M., Danell, V.: Fast morphological image processing open-source extensions for GPU processing with CUDA. IEEE J. Sel. Topics Signal Process. 6(7), 849–855 (2012). doi:10.1109/JSTSP.2012.2204857

    Article  Google Scholar 

  21. Torres-Huitzil, C., Arias-Estrada, M.: FPGA-based configurable systolic architecture for window-based image processing. EURASIP J. Adv. Signal Process. 2005(7), 1024–1034 (2005)

    Article  MATH  Google Scholar 

  22. Urbach, E., Wilkinson, M.: Efficient 2-d grayscale morphological transformations with arbitrary flat structuring elements. IEEE Trans. Image Process. 17(1), 1–8 (2008). doi:10.1109/TIP.2007.912582

    Article  MathSciNet  Google Scholar 

  23. Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 272–285 (2007). doi:10.1109/TPAMI.2007.28

    Google Scholar 

  24. Van Droogenbroeck, M., Buckley, M.: Morphological erosions and openings: fast algorithms based on anchors. J. Math. Imaging Vision 22 (2–3), 121–142 (2005). http://hdl.handle.net/2268/1302 (special issue on mathematical morphology after 40 years)

    Google Scholar 

  25. Vincent, L.: Granulometries and opening trees. Fundam. Inf. 41(1–2), 57–90 (2000). http://dl.acm.org/citation.cfm?id=341148.341157

  26. Zhang, C., Wang, C., Ahmad, M.: A pipeline vlsi architecture for fast computation of the 2-d discrete wavelet transform. IEEE Trans. Circuits Syst. I Regul. Pap. 59(8), 1775–1785 (2012). doi:10.1109/TCSI.2011.2180432

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author acknowledges the support received from CONACyT, Mexico, through project No. 99912, and the anonymous reviewers for their comments to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar Torres-Huitzil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres-Huitzil, C. FPGA-based fast computation of gray-level morphological granulometries. J Real-Time Image Proc 11, 547–557 (2016). https://doi.org/10.1007/s11554-013-0355-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-013-0355-0

Keywords

Navigation