Skip to main content

Advertisement

Log in

Real-time monocular image-based path detection

A GPU-based embedded solution for on-board execution on mobile robots

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

In this work, we present a new real-time image-based monocular path detection method. It does not require camera calibration and works on semi-structured outdoor paths. The core of the method is based on segmenting images and classifying each super-pixel to infer a contour of navigable space. This method allows a mobile robot equipped with a monocular camera to follow different naturally delimited paths. The contour shape can be used to calculate the forward and steering speed of the robot. To achieve real-time computation necessary for on-board execution in mobile robots, the image segmentation is implemented on a low-power embedded GPU. The validity of our approach has been verified with an image dataset of various outdoor paths as well as with a real mobile robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  2. Blas, M., Agrawal, M., Sundaresan, A., Konolige, K.: Fast color/texture segmentation for outdoor robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008. IROS 2008, pp. 4078–4085. IEEE, New York (2008)

  3. Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: a survey. J. Intell. Robot. Syst. 53(3), 263–296 (2008)

    Article  Google Scholar 

  4. Borenstein, J., Koren, Y.: Obstacle avoidance with ultrasonic sensors. IEEE J. Robot. Autom. 4(2), 213–218 (1988)

    Article  Google Scholar 

  5. Chang, C., Siagian, C., Itti, L.: Mobile robot monocular vision navigation based on road region and boundary estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012. IEEE, New York (2012)

  6. Chen, Z., Birchfield, S.: Qualitative vision-based path following. IEEE Trans. Robot. 25(3), 749–754 (2009)

    Article  Google Scholar 

  7. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002). doi:10.1109/34.1000236

    Article  Google Scholar 

  8. Dahlkamp, H., Kaehler, A., Stavens, D., Thrun, S., Bradski, G.: Self-supervised monocular road detection in desert terrain. In: Proceedings of Robotics: Science and Systems (RSS) (2006)

  9. DeSouza, G., Kak, A.: Vision for mobile robot navigation: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 237–267 (2002)

    Article  Google Scholar 

  10. Ettinger, S., Nechyba, M., Ifju, P., Waszak, M.: Vision-guided flight stability and control for micro air vehicles. Adv. Robot. 17(7), 617–640 (2003)

    Article  Google Scholar 

  11. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  12. Fulkerson, B., Soatto, S.: Really quick shift: Image segmentation on a gpu. In: ECCV2010 Workshop on Computer Vision on GPUs (CVGPU2010) (2010)

  13. Fulkerson, B., Vedaldi, A.: Really quick shift: Image segmentation on a gpu. http://vision.ucla.edu/~brian/gpuquickshift.html, version 0.2 (2010)

  14. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using depth cameras for dense 3d modeling of indoor environments. In: The 12th International Symposium on Experimental Robotics (ISER), vol. 20, pp. 22–25 (2010)

  15. Kaliyaperumal, K., Lakshmanan, S., Kluge, K.: An algorithm for detecting roads and obstacles in radar images.IEEE Trans. Veh. Technol. 50(1), 170–182 (2001)

    Article  Google Scholar 

  16. Kong, H., Audibert, J., Ponce, J.: General road detection from a single image. IEEE Trans. Image Process. 19(8), 2211–2220 (2010)

    Article  MathSciNet  Google Scholar 

  17. KoÅanar, K., KrajÃnk, T., PÅŹeuÄil, L.: Visual topological mapping. In: Bruyninckx, H., Preucil, L., Kulich, M. (eds.) European Robotics Symposium 2008, Springer Tracts in Advanced Robotics, vol. 44, pp. 333–342. Springer, Berlin (2008)

  18. Krajník, T., Faigl, J., Vonásek, V., Košnar, K., Kulich, M., Přeučil, L.: Simple yet stable bearing-only navigation. J. Field Robot. 27(5), 511–533 (2010)

    Article  Google Scholar 

  19. Kuhnl, T., Kummert, F., Fritsch, J.: Monocular road segmentation using slow feature analysis. In: Intelligent Vehicles Symposium (IV), 2011 IEEE, pp. 800–806, IEEE, New York (2011)

  20. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  21. May, S., Werner, B., Surmann, H., PervÃũlz, K.: 3d time-of-flight cameras for mobile robotics. In: IROS, pp. 790–795. IEEE, New York (2006)

  22. Moghadam, P., Starzyk, J., Wijesoma, W.: Fast vanishing-point detection in unstructured environments. IEEE Trans. Image Process. 21(1), 425–430 (2012)

    Article  MathSciNet  Google Scholar 

  23. Neto, A., Victorino, A., Fantoni, I., Zampieri, D.: Robust horizon finding algorithm for real-time autonomous navigation based on monocular vision. In: 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2011, pp. 532–537. IEEE, New York (2011)

  24. Nieto, M., Salgado, L.: Real-time vanishing point estimation in road sequences using adaptive steerable filter banks. In: Advanced Concepts for Intelligent Vision Systems, pp. 840–848. Springer, Berlin (2007)

  25. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pedre, S., De Cristóforis, P., Caccavelli, J., Stoliar, A.: A mobile mini robot architecture for research, education and popularization of science. J. Appl. Comput. Sci. Methods; Guest Editors: Zurada, J, Estevez p 2 (2010)

  27. Rasmussen, C.: Grouping dominant orientations for ill-structured road following. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 1, pp. I-470. IEEE, New York (2004)

  28. Rasmussen, C., Lu, Y., Kocamaz, M.: Appearance contrast for fast, robust trail-following. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, pp. 3505–3512. IEEE, New York (2009)

  29. Santosh, D., Achar, S., Jawahar, C.: Autonomous image-based exploration for mobile robot navigation. In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pp. 2717–2722. IEEE, New York (2008)

  30. Šegvić, S., Remazeilles, A., Diosi, A., Chaumette, F.: A mapping and localization framework for scalable appearance-based navigation. Comput. Vis. Image Underst. 113(2), 172–187 (2009)

    Article  Google Scholar 

  31. Sezgin, M. et al.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–168 (2004)

    Article  MathSciNet  Google Scholar 

  32. Sheikh, Y., Khan, E., Kanade, T.: Mode-seeking by medoidshifts. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007, pp. 1–8. IEEE, New York (2007)

  33. Surmann H, Lingemann K, Nüchter A, Hertzberg J (2001) A 3d laser range finder for autonomous mobile robots. In: Proceedings of the 32nd ISR (International Symposium on Robotics), vol 19, pp 153–158

  34. Ulrich, I., Nourbakhsh, I.: Appearance-based obstacle detection with monocular color vision. In: Proceedings of the National Conference on Artificial Intelligence, 1999, pp. 866–871. AAAI Press, Menlo Park; MIT Press, Cambridge (2000)

  35. Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) Computer Vision ECCV 2008. Lecture Notes in Computer Science, vol. 5305, pp 705–718. Springer, Berlin (2008)

  36. Wang, Y., Fang, S., Cao, Y., Sun, H.: Image-based exploration obstacle avoidance for mobile robot. In: Control and Decision Conference, 2009. CCDC’09, Chinese. pp. 3019–3023. IEEE, New York (2009)

  37. Yanqing, W., Deyun, C., Chaoxia, S., Peidong, W.: Vision-based road detection by monte carlo method. Inf. Technol. J. 9(3), 481–487 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministry of Education of the Czech Republic by project 7AMB12AR022 and by Ministry of Science of Argentina by project ARC/11/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo De Cristóforis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cristóforis, P.D., Nitsche, M.A., Krajník, T. et al. Real-time monocular image-based path detection. J Real-Time Image Proc 11, 335–348 (2016). https://doi.org/10.1007/s11554-013-0356-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-013-0356-z

Keywords