Skip to main content
Log in

Embedded and real-time architecture for bio-inspired vision-based robot navigation

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

A recent trend in several robotics tasks is to consider vision as the primary sense to perceive the environment or to interact with humans. Therefore, vision processing becomes a central and challenging matter for the design of real-time control architectures. We follow in this paper a biological inspiration to propose a real-time and embedded control system relying on visual attention to learn specific actions in each place recognized by our robot. Faced with a performance challenge, the attentional model allows to reduce vision processing to a few regions of the visual field. However, the computational complexity of the visual chain remains an issue for a processing system embedded onto an indoor robot. That is why we propose as the first part of our system, a full-hardware architecture prototyped onto reconfigurable devices to detect salient features at the camera frequency. The second part learns continuously these features in order to implement specific robotics tasks. This neural control layer is implemented as embedded software making the robot fully autonomous from a computation point of view. The integration of such a system onto the robot enables not only to accelerate the frame rate of the visual processing, to relieve the control architecture but also to compress the data-flow at the output of the camera, thus reducing communication and energy consumption. We present in this paper the complete embedded sensorimotor architecture and the experimental setup. The presented results demonstrate its real-time behavior in vision-based navigation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. Place field is the projection in the environment of the locations where a given PC fires.

  2. A robulab from the Robosoft company equipped with an additional computer based on a I5 processor.

  3. More information on how the neuronal simulator works can be found in [18, 33].

  4. A neuron of this layer is connected to all the pixels of a small local image.

  5. The merge may be performed in the superficial layer of the entorhinal cortex or in the postrhinal cortex.

  6. The tracking system used to plot trajectories is subject to local errors represented in figures by small jumps and discontinuities. Some videos of the experiments are available at the following address: http://www-etis.ensea.fr/robotsoc

  7. http://www-etis.ensea.fr/robotsoc.

References

  1. ARM: Amba open specifications, the de facto standard for on-chip communication. (2013) http://www.arm.com/products/system-ip/amba/amba-open-specifications.php

  2. Ballard, D.H.: Animate vision. Artif. Intell. 48(1), 5786 (1991)

    Article  MathSciNet  Google Scholar 

  3. Battezzati, N., Colazzo, S., Maffione, M., Senepa, L.: Surf algorithm in fpga: a novel architecture for high demanding industrial applications. In: Rosenstiel, W, Thiele, L (eds.) DATE, IEEE, pp. 161–162 (2012)

  4. Birem, M., Berry, F.: Fpga-based real time extraction of visual features. In: Conference (2010)

  5. Bonato, V., Holanda, J., Marques, E.: An embedded multi-camera system for simultaneous localization and mapping. In: Proceedings of Applied Reconfigurable Computing, Lecture Notes on Computer Science (2006)

  6. Bonato, V., Marques, E., Constantinides, G.A.: A parallel hardware architecture for scale and rotation invariant feature detection. IEEE Trans. Circ. Syst. Video Technol. 18(12), 1703–1712 (2008). doi:10.1109/TCSVT.2008.2004936

    Article  Google Scholar 

  7. Bouris, D., Nikitakis, A., Walters, J.: Fast and efficient fpga-based feature detection employing the surf algorithm. In: 2010 18th IEEE Annual International Symposium on, Field-Programmable Custom Computing Machines (FCCM), pp. 3–10 (2010). doi:10.1109/FCCM.2010.11

  8. Burgess, N, O’Keefe, J.: Neuronal computations underlying the firing of place cells and their role in navigation. Hippocampus 7, 749–762 (1996)

    Article  Google Scholar 

  9. Burgess, N., Recce, M., O’Keefe, J.: A model of hippocampal function. Neural Netw. 7(6/7), 1065–1081 (1994)

    Article  MATH  Google Scholar 

  10. Cartwright, B.A., Collett, T.S.: Landmark learning in bees. J. Comp. Physiol. 151, 521–543 (1983)

    Article  Google Scholar 

  11. Cope, B.: Implementation of 2d Convolution on fpga, gpu and cpu. Tech. rep (2006)

  12. Crowley, J.L., Riff, O.: Fast Computation of Scale Normalised Gaussian Receptive Fields. Springer Lecture Notes in Computer Science 2695 (2003)

  13. Cuperlier, N., Quoy, M., Gaussier, P.: Neurobiologically inspired mobile robot navigation and planning. Fronti. NeuroRobot. 1(1) (2007)

  14. Farabet, C., Poulet, C., LeCun, Y.: An fpga-based stream processor for embedded real-time vision with convolutional networks. In: 2009 IEEE 12th International Conference on, Computer Vision Workshops (ICCV Workshops), pp. 878–885 (2009). doi:10.1109/ICCVW.2009.5457611

  15. Frintrop, S., Jensfelt, P.: Attentional landmarks and active gaze control for visual SLAM. IEEE Trans. Robot. 24(5), 1054–1065 (2008). doi:10.1109/tro.2008.2004977

    Article  Google Scholar 

  16. Frintrop, S., Rome, E., Christensen, H.I.: Computational visual attention systems and their cognitive foundations: a survey. ACM Trans. Appl. Percept. 7(1), 6:1–6:39 (2010). doi:10.1145/1658349.1658355

    Article  Google Scholar 

  17. Gallistel, C.R.: The Organization of Learning. MIT Press, Cambridge (1993)

  18. Gaussier, P., Zrehen, S.: Perac: a neural architecture to control artificial animals. Robot. Auton. Syst. 16(24), 291320 (1995)

    Google Scholar 

  19. Gaussier, P., Joulain, C., Zrehen, S., Banquet, J.P., Revel, A.: Visual navigation in an open environment without map. In: International Conference On Intelligent Robots and Systems-IROS’97, pp. 545–550. IEEE/RSJ, Grenoble, France (1997)

  20. Gaussier, P., Joulain, C., Banquet, J.P., Leprêtre, S,. Revel, A.: The visual homing problem: an example of robotic/biology cross fertilization. Robot. Auton. Syst. 30, 115–180 (2000)

    Article  Google Scholar 

  21. Gaussier, P., Revel, A., Banquet, J.P., Babeau, V.: From view cells and place cells to cognitive map learning: processing stages of the hippocampal system. Biol. Cybern. 86, 15–28 (2002)

    Article  MATH  Google Scholar 

  22. Giovannangeli, C, Gaussier, P., Banquet, J.P.: Robustness of visual place cells in dynamic indoor and outdoor environment. Int. J. Adv. Rob. Syst. 3(2), 115–124 (2006)

    Google Scholar 

  23. Goodale, M.A., Milner, A.D.: Separate visual pathways for perception and action. Trends Neurosci.15(1), 20–25 (1992)

    Article  Google Scholar 

  24. Heinke, D., Humphreys, G.: Computational models of visual selective attention: a review. Connect. Models Psychol. 273–312 (2005)

  25. Hirel, J., Gaussier, P., Quoy, M.: Biologically inspired neural networks for spatio-temporal planning in robotic navigation tasks. In: 2011 IEEE International Conference on, Robotics and Biomimetics (ROBIO), pp. 1627–1632 (2011). doi:10.1109/ROBIO.2011.6181522

  26. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998). doi:10.1109/34.730558

    Article  Google Scholar 

  27. Judd, S.P.D., Collet, T.S.: Multiple stored views and landmark guidance in ants. Nature 392, 710–712 (1998)

    Article  Google Scholar 

  28. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol 4, 219–227 (1985)

    Google Scholar 

  29. Kolb, B., Tees, R.: The Cerebral Cortex of the Rat. MIT Press, Cambridge (1990)

  30. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 79116 (1998)

    Google Scholar 

  31. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91110 (2004)

    Article  Google Scholar 

  32. Maillard, M., Gapenne, O., Hafemeister, L., Gaussier, P.: Perception as a dynamical sensori-motor attraction basin. In: Proceedings of the 8th European Conference on Advances in Artificial Life (ECAL 05), vol. 3630, p. 3746 (2005)

  33. Matthieu, L., Pierre, A., Philippe, G.: Distributed real time neural networks in interactive complex systems. In: Proceedings of the 5th International Conference on Soft Computing as Transdisciplinary Science and Technology. ACM, New York, NY, USA, CSTST ’08, pp. 95–100 (2008). doi:10.1145/1456223.1456247

  34. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. Comput. Vis. 60(1) (2004)

  35. O’Keefe, J., Nadel, N.: The Hippocampus As a Cognitive Map. Clarenton Press, Oxford (1978)

  36. Oliva, A., Torralba, A., Castelhano, M.S., Henderson, J.M. Top-down control of visual attention in object detection. In: Proceedings of the IEEE Int’l Conference on Image Processing (ICIP ’03) (2003)

  37. Ouerhani, N., Hügli, H.: Robot self-localization using visual attention. In: CIRA, IEEE, pp. 309–314 (2005)

  38. Pham, P.H., Jelaca, D., Farabet, C., Martini, B., LeCun, Y., Culurciello, E.: Neuflow: dataflow vision processing system-on-a-chip. In: International Midwest Symposium on Circuits and Systems (MWSCAS’12) (2012)

  39. Schaeferling, M.: Flex-surf: A flexible architecture for fpga based robust feature extraction for optical tracking systems. In: Conference on Reconfigurable Computing and FPGAs (2010)

  40. Siagian, C., Itti, L.: Biologically inspired mobile robot vision localization. IEEE Trans. Robot. 25(4), 861–873 (2009)

    Article  Google Scholar 

  41. Tinbergen, N.: The Study of Instinct. Oxford University Press, London (1951)

  42. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cogn. Psychol. 12(1), 97–136 (1980). doi:10.1016/0010-0285(80)90005-5

    Article  Google Scholar 

  43. Tsotsos, J.: Analyzing vision at the complexity level. Behav. Brain Sci. 13(3), 423–469 (1990)

    Article  Google Scholar 

  44. Verdier, F., Miramond, B., Maillard, M., Huck, E., Levebvre, T.: Using high-level rtos models for hw/sw embedded architecture exploration: case study on mobile robotic vision. EURASIP J. Embed. Syst. (2008)

  45. Zhong, S., Wang, J., Yan, L., Kang, L., Cao, Z.: A real-time embedded architecture for sift. J. Syst. Archit. 59(1), 16–29 (2013). doi:10.1016/j.sysarc.2012.09.002

    Google Scholar 

  46. Zipser, D.: Biologically plausible models of place recognition and goal location. In: McClelland, JL., Rumelhart, D.E (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol 2. MIT Press, Cambridge, MA. pp. 423–470 (1986)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Miramond.

Appendix

Appendix

1.1 Open access design files

The FPGA-based vision architecture can be freely downloadable for several platforms Footnote 7

  • Altera DE2-115 board equipped with D5M camera,

  • Xilinx Zynq ZC702 board equipped with the On-semi camera.

The design files contain:

  • the configuration file of the target FPGA (respectively, Altera Cyclone IV 115kLE, and Zynq 7000),

  • the flash image for the embedded processor (respectively, Nios-II and dual-core Cortex A9). This image contains the executable files that read back the features.

One can then send the extracted features through an Ethernet link to a distant computer or compute them locally.

1.2 Additional figures

See Figs. 24 and 25.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiack, L., Cuperlier, N. & Miramond, B. Embedded and real-time architecture for bio-inspired vision-based robot navigation. J Real-Time Image Proc 10, 699–722 (2015). https://doi.org/10.1007/s11554-013-0391-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-013-0391-9

Keywords

Navigation