Skip to main content
Log in

High performance architecture for real-time HDTV broadcasting

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

A novel full search motion estimation co-processor architecture design is presented in this paper. The proposed architecture efficiently reuses search area data to minimize memory I/O while fully utilizing the hardware resources. A smart processing element (PE) and an efficient simple internal memory are the main components of the proposed co-processor. An efficient algorithm is used for loading both the current block and the search area inside the PE array. The search area data flow horizontally while the current block data are stationary. As a result, the speed of the co-processor is improved in terms of the throughput and the operating frequency compared to the state-of-the-art techniques. A smart local memory and PE design guarantees a simple and a regular data flow. The design of the local memory is implemented using only registers and a simple counter. This simplifies the design by avoiding the use of complicated addressing to write or read into/from the local memory. The proposed architecture is implemented using both the FPGA and the ASIC flow design tools. For a search range of 32 × 32 and block size of 16 × 16, the architecture can perform motion estimation for 30 fps of HDTV video at 350 MHz and easily outperforms many fast full search architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circ. Syst. Video Technol. 13, 560–576 (2003)

    Article  Google Scholar 

  2. Eckart, S., Fogg, C.: ISO/IEC MPEG-2 software video codec. Proc. SPIE 2419, 100–118 (1995)

    Article  Google Scholar 

  3. ITU-T Rec. H.263: Video coding for low bit rate communication (1998)

  4. ISO/IEC 14496-2 (MPEG-4 Video): Information technology—Coding of audio visual objects (1999)

  5. ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC: Advanced video coding for generic audiovisual services (2003)

  6. Woong, I.L.C., Byeungwoo, J., Jechang, J.: Fast motion estimation with modified diamond search for variable motion block sizes. In: Proceedings. 2003 International Conference on Image Processing, 2003. ICIP 2003, vol. 3, pp. II-371-4 (2003)

  7. Goel, S., Ismail, Y., Bayoumi, M.A.: Adaptive search window size algorithm for fast motion estimation in H.264/AVC standard. In: 48th Midwest Symposium on Circuits and Systems, 2005, vol. 2, pp. 1557–1560 (2005)

  8. Goel, S., Ismail, Y., Devulapalli, P., McNeely, J., Bayoumi, M.A.: An efficient data reuse motion estimation engine. In: IEEE Workshop on Signal Processing Systems Design and Implementation, 2006. SIPS ‘06, pp. 383–386 (2006)

  9. Ahmed, A., Shahid, M.U., Martina, M., Magli, E., Masera, G.: VLSI architecture for low-complexity motion estimation in H.264 multiview video coding. In: 2013 Euromicro Conference on Digital System Design (DSD), pp. 288–292 (2013)

  10. Huong, H., Klepko, R., Nam, N., Demin, W.: A high performance hardware architecture for multi-frame hierarchical motion estimation. IEEE Trans. Consum. Electron. 57, 794–801 (2011)

    Article  Google Scholar 

  11. Pastuszak, G., Jakubowski, M.: Adaptive computationally scalable motion estimation for the hardware H.264/AVC encoder. IEEE Trans. Circ. Syst. Video Technol. 23, 802–812 (2013)

    Article  Google Scholar 

  12. Koga, T., Iinuma, K., Iijima, A.: Motion-compensated interframe coding for video conferencing. In: Proceedings of NTC81, pp. C9.6–9.6.5, New Orleans, LA (1981)

  13. Li, R., Zeng, B., Liou, M.L.: A new three-step search algorithm for block motion estimation. IEEE Trans. Circ. Syst. Video Technol. 4, 438–442 (1994)

    Article  Google Scholar 

  14. Po, L.M., Ma, W.C.: A novel four-step search algorithm for fast block motion estimation. IEEE Trans. Circ. Syst. Video Technol. 6, 313–317 (1996)

    Article  Google Scholar 

  15. Zhu, S., Ma, K–.K.: A new diamond search algorithm for fast block matching motion estimation. IEEE Trans. Image Process. 9, 287–290 (2000)

    Article  Google Scholar 

  16. Cheung, C.H., Po, L.M.: A novel cross-diamond search algorithm for fast block motion estimation. IEEE Trans. Circ. Syst. Video Technol. 12, 1168–1177 (2002)

    Article  Google Scholar 

  17. Sahani, S.K., Adhikari, G., Das, B.K.: Fast template matching based on multilevel successive elimination algorithm. In: 2012 International Conference on Signal Processing and Communications (SPCOM), pp. 1–5 (2012)

  18. Tae Gyoung, A., Yong Ho, M., Jae-Ho, K.: Fast full-search motion estimation based on multilevel successive elimination algorithm. IEEE Trans. Circ. Syst. Video Technol. 14, 1265–1269 (2004)

    Article  Google Scholar 

  19. Ce, Z., Wei-Song, Q., Ser, W.: Predictive fine granularity successive elimination for fast optimal block-matching motion estimation. Image Process. IEEE Trans. 14, 213–221 (2005)

    Article  Google Scholar 

  20. Ismail, Y., McNeely, J.B., Shaaban, M., Mahmoud, H., Bayoumi, M.A.: Fast motion estimation system using dynamic models for H.264/AVC video coding. IEEE Trans. Circ. Syst. Video Technol. 22, 28–42 (2012)

    Article  Google Scholar 

  21. Luheng, J., Au, O.C., Chi-ying, T., Yongfang, S., Rui, M., Hong, Z.: A diamond search window based adaptive search range algorithm. In: 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 1–4 (2013)

  22. Komarek, T., Pirsch, P.: Array architectures for block matching algorithms. IEEE Trans. Circ. Syst. 36, 1301–1308 (1989)

    Article  Google Scholar 

  23. Pirsch, P., Demassieux, N., Gehrke, W.: VLSI architectures for video compression—a survey. Proc. IEEE 83, 220–246 (1995)

    Article  Google Scholar 

  24. Minmin, S., Li, L., Jiawen, W., Hongbing, P., Wei, L.: A horizontal data reuse approach for fractional motion estimation in H.264/AVC encoder. In: 2012 International Conference on Computer Science and Information Processing (CSIP), pp. 821–825 (2012)

  25. Kaijin, W., Rongwei, Z., Shanghang, Z., Huizhu, J., Don, X., Wen, G.: An optimized hardware video encoder for AVS with Level C + data reuse scheme for motion estimation. In: 2012 IEEE International Conference on Multimedia and Expo (ICME), pp. 1055–1060 (2012)

  26. Tuan, J.-C., Chang, T.-S., Jen, C.-W.: On the data reuse and memory bandwidth analysis for full-search block-matching VLSI architecture. Trans. Circ. Syst. Video Technol. 12, 61–72 (2002)

    Article  Google Scholar 

  27. Goel, S., Ismail, Y., Bayoumi, M.: High-speed motion estimation architecture for real-time video transmission. Computer J. 55, 35–46 (2011)

    Article  Google Scholar 

  28. Minho, K., Ingu, H., Soo-Ik, C.: A fast VLSI architecture for full-search variable block size motion estimation in MPEG-4 AVC/H.264. In: Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Conference, vol. 1, pp. 631–634 (2005)

  29. Vos, L.D., Schobinger, M.: VLSI architecture for a flexible block matching processor. IEEE Trans. Circ. Syst. Video Technol. 5(5), 417–428 (1995)

    Article  Google Scholar 

  30. Lai, Y.-K., Chen, L.-F.: A high data-reuse architecture with double-slice processing for full-search block-matching algorithm. In: Proceedings of ISCAS 2003, vol. 2, pp. II-716–II-719 (2003)

  31. Swee Yeow,Y., McCanny, J.V.: A VLSI architecture for advanced video coding motion estimation. In: Proceedings. IEEE International Conference on Application-Specific Systems, Architectures, and Processors, pp. 293–301 (2003)

  32. Borkar, S.: Design challenges of technology scaling. Micro IEEE, pp. 23–29 (1999)

  33. Joint Video Team: Reference Software JM12.4. http://iphome.hhi.de/suehring/tml/download/ (2014)

  34. Azadfar, M.M.: Implementation of a optimized systolic array architecture for FSBMA using FPGA for real-time applications. IJCSNS Int. J. Comput. Sci. Netw. Sec. 8(3), 46–51 (2008)

  35. Wang, B.-M., Yen, J.-C., Chang, S.: Zero waiting-cycle hierarchical block matching algorithm and its array architecture. IEEE Trans. Circ. Syst. Video Technol. 4, 18–28 (1994)

    Article  Google Scholar 

  36. Jehng, Y.-S., Chen, L.-G., Chiueh, T.-D.: An efficient and simple VLSI tree architecture for motion estimation algorithms. IEEE Trans. Signal Process. 41, 889–900 (1993)

    Article  Google Scholar 

  37. Nunez-Yanez, J.L., Nabina, A., Hung, E., Vafiadis, G.: Cogeneration of fast motion estimation processors and algorithms for advanced video coding. IEEE Trans Very Large Scale Integr (VLSI) Syst 20(Issue3), 437–448 (2012)

    Article  Google Scholar 

  38. Zhang, J., Nezan, J.-F., Cousin, J.-G.: Implementation of motion estimation based on heterogeneous parallel computing system with open CL. In: IEEE 9th International Conference on Embedded Software and Systems (HPCC-ICESS), High Performance Computing and Communication, pp. 41–45 (2012)

  39. González, D., Botella, G., García, C., Prieto, M., Tirado, F.: Acceleration of blockmatching algorithms using a custom instruction-based paradigm on a Nios II microprocessor. EURASIP J. Adv. Signal Process. 2013, 118 (2013). doi:10.1186/1687-6180-2013-118

    Article  Google Scholar 

  40. González, D., Botella, G., Meyer-Baese, U., Garcí, C., Sanz, C., Prieto-Matías, M., Tirado, F.: A low cost matching motion estimation sensor based on the NIOS II microprocessor. Sens. Basel 12, 13126–13149 (2012). doi:10.3390/s121013126

    Article  Google Scholar 

  41. Monteiro, E., Maule, M., Sampaio, F., Diniz, C., Zatt, B., Bampi, S.: Real-time block matching motion estimation onto GPGPU. In: 19th IEEE International Conference on Image Processing (ICIP), pp. 1693–1696 (2012)

Download references

Acknowledgments

The authors acknowledge the support of the Deanship of Scientific Research—University of Bahrain—Bahrain for their financial support to finalize this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Ismail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, Y., El-Medany, W., Al-Junaid, H. et al. High performance architecture for real-time HDTV broadcasting. J Real-Time Image Proc 11, 633–644 (2016). https://doi.org/10.1007/s11554-014-0430-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-014-0430-1

Keywords

Navigation