Abstract
Rescue missions, military target detection, hazard prevention, and other time-critical remote-sensing applications require real-time or autonomous decision making and onboard processing capabilities. Thus, lightweight, small size, and low-power-consumption hardware is essential for onboard real-time processing systems. With the increasing need for dimensionality, size, and resolution of hyperspectral sensors, additional challenges are posed upon remote-sensing processing systems, and more capable computing architectures are needed. Graphical processing units (GPUs) emerged as promising architecture for light-weight high-performance computing. In this paper, we propose accelerated parallel solutions for the well-known recursive hierarchical segmentation (RHSEG) analysis algorithm, using a GPU, hybrid multicore CPU with GPU and hybrid multicore CPU/GPU clusters. RHSEG is a method developed by the National Aeronautics and Space Administration, which is designed to provide more useful classification information with related objects and regions across the hierarchy of output levels. The proposed solutions are built using the NVidia’s compute unified device architecture and Microsoft’s C++ Accelerated Massive Parallelism (C++ AMP) and are tested using NVidia GeForce hardware and Amazon Elastic Compute Cluster (EC2). The achieved speedups by parallel solutions compared with CPU sequential implementations are 21× for parallel single GPU and 240× for hybrid multinode computer clusters with 16 computing nodes. The energy consumption is reduced to 74 % when using a single GPU, compared to that for the equivalent parallel CPU cluster.















Similar content being viewed by others
Notes
NASA JPL (http://www.jpl.nasa.gov).
References
Plaza, A.J., Chang, C.: High performance computing in remote sensing. Taylor & Francis Group, BocaRaton (FL) (2007)
Shippert, P.: Introduction to hyperspectral image analysis. Online J. Space Commun. 3 (2003)
Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams S.W., Yelick, K.A.: The landscape of parallel computing research: a view from Berkeley. In: Technical report No. UCB/EECS-2006-183, EECS Department. University of California, Berkeley (2006)
Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.: A Survey of general-purpose computation on graphics hardware. Comput. Graph. Forum 26(1), 80–113 (2007)
Setoain, J., Prieto, M., Tenllado, C., Tirado, F.: GPU for parallel on-board hyperspectral image processing. Int. J. High Perform. Comput. Appl. 22(4), 424–437 (2008)
Lu, D., Weng, Q.: A survey of image classification methods and techniques for improving classification performance. Int. J. of Remote Sens. 28(5), 823–870 (2007)
Li, J., Bioucas-Dias, J.M., Plaza, A.: Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning. IEEE Trans. Geosci. Remote Sens. 51(2), 844–856 (2013)
Xu, L., Li, J.: Bayesian classification of hyperspectral imagery based on probabilistic sparse representation and Markov Random Field. IEEE Geosci. Remote Sens. Lett. 11(4), 823–827 (2014)
Blaschke, T.: Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65(1), 2–16 (2010)
Camps-Valls, G., Tuia, D., Bruzzone, L., Atli Benediktsson, J.: Advances in hyperspectral image classification: earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 31(1), 45–54 (2014)
Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J.C., Trianni, G.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113, 110–122 (2009)
Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., Chanussot, J.: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 5(2), 354–379 (2012)
Tilton, J.C.: Method for recursive hierarchical segmentation by region growing and spectral clustering with a natural convergence criterion. Discl. Invent. New Technol. NASA Case No. GSC 14, 328–331 (2000)
Hossam, M. A., Ebied, H. M., Abdel-Aziz, M. H.: Hybrid cluster of multicore CPUs and GPUs for accelerating hyperspectral image hierarchical segmentation. In: 8th International conference on computer engineering and systems (ICCES’13), 262–267 (2013)
Kirk, D.: NVIDIA CUDA software and GPU parallel computing architecture. In: 6th International symposium on memory management (ISMM ‘07), 103–104 (2007)
Gregory, K., Miller, A.: C++ Amp: accelerated massive parallelism with Microsoft Visual C++. Microsoft Press Series, Microsoft GmbH (2012)
Qt Project Documentation. http://www.qt-project.org/doc/qt-4.8/
Amazon Elastic Compute cloud EC2. http://www.aws.amazon.com/ec2/
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) J. 31(3), 264–323 (1999)
Beucher, S., Lantuéjoul, C.: Use of watersheds in contour detection. International Workshop on Image Processing, Real-Time edge and motion detection/estimation, CCETT/INSA/IRISA, IRISA Report no. 132, 2.1–2.12 (1979)
Tarabalka, Y., Chanussot, J., Benediktsson, J.A.: Segmentation and Classification of hyperspectral images using watershed transformation. Pattern Recognit. J. 43(7), 2367–2379 (2010)
Moreno, R., Graña, M.: Segmentation of hyperspectral images by tuned chromatic watershed, recent advances in knowledge-based paradigms and applications. Springer Int. Publ. 234, 103–113 (2014)
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)
Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C.: Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 101(3), 652–675 (2013)
Ball, G.H., Hall, D.J.: ISODATA: a novel method of data analysis and classification, Tech. Rep. Stanford University, Stanford CA (1965)
Plaza, A.J.: Parallel spatial-spectral processing of hyperspectral images. Comput. Intel. Remote Sens. SCI 133, 163–192 (2008)
Deb, S., Sinha, S.: Comparative improvement of image segmentation performance with graph based method over watershed transform image segmentation, distributed computing and internet technology. Springer Int. Publ. 8337, 322–332 (2014)
Beucher, S.: Watershed, hierarchical segmentation and waterfall algorithm. The second international conference on Mathematical Morphology and its Applications to Image Processing, 69–76 (1994)
Tarabalka, Y., Chanussot, J., Benediktsson, J.A.: Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers. IEEE Trans. Syst. Man Cybern. B Cybern. 40(5), 1267–1279 (2010)
Plaza, A., Valencia, D., Plaza, J., Martinez, P.: Commodity cluster-based parallel processing of hyperspectral imagery, plaza, valencia. J. Parallel Distrib. Comput. 66, 345–358 (2006)
Lai, C., Huang, M., Shi, X., You H.: Accelerating geospatial applications on hybrid architectures. In: Proceedings of 15th IEEE International Conference on High Performance Computing and Communications (HPCC 2013), 1545–1552 (2013)
Kenneland supercomputer. http://www.keeneland.gatech.edu/
Yang, S., Dong J., Yuan, B.: An efficient parallel ISODATA algorithm based on Kepler GPUs. In: International Joint Conference on Neural Networks (2014)
Becker, D.J., Sterling, T., Savarese, D., Dorband, J.E., Ranawake, U.A., Packer, C.V.: BEOWULF: a parallel workstation for scientific computation. In: Proceedings of International Conference on Parallel Processing (ICPP) (1995)
Tilton, J.C.: Image segmentation by region growing and spectral clustering with a natural convergence criterion. In: International Geoscience and Remote Sensing Symposium (IGARSS 98), pp 1766–1768. Seattle, WA (1998)
Beaulieu, J.M., Goldberg, M.: Hierarchy in picture segmentation: a stepwise optimization approach. IEEE Trans. Pattern Anal. Mach. Intell. 11(2), 150–163 (1989)
Khronos Group OpenCL. Available: http://www.khronos.org/opencl/
Reflective Optics System Imaging Spectrometer, ROSIS. http://www.opairs.aero/rosis_en.html
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hossam, M.A., Ebied, H.M., Abdel-Aziz, M.H. et al. Accelerated hyperspectral image recursive hierarchical segmentation using GPUs, multicore CPUs, and hybrid CPU/GPU cluster. J Real-Time Image Proc 14, 413–432 (2018). https://doi.org/10.1007/s11554-014-0464-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-014-0464-4