Skip to main content

Advertisement

Log in

Fast intra prediction algorithm based on texture analysis for 3D-HEVC encoders

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

The advances in display technologies and the growing popularity of 3D video systems have attracted more consumers for 3D viewing experiences, and, consequently, the demand for storage and transmission of 3D video content is increasing. To cope with this demand, a 3D video extension of high-efficiency video coding (HEVC) standard is being developed and near the final standardization stage. The upcoming 3D-HEVC standard is expected to provide higher encoding efficiency than its predecessors, supporting multiple views with high resolution, at a cost of considerable increase in computational complexity, which can be an obstacle to its use in real-time applications. This article proposes a novel complexity reduction algorithm developed to optimize the 3D-HEVC intra mode decision targeting real-time video processing for consumer devices with limited computational power, such as 3D camcorders and smartphones equipped with multiple cameras and depth acquisition capabilities. The proposed algorithm analyzes the texture frames and depth maps to estimate the orientation of edges present in the prediction unit data, speeding up the intra prediction process and reducing the 3D-HEVC encoding processing time. Experimental results demonstrate that the proposed algorithm can save 26 % in computational complexity on average with negligible loss of encoding efficiency. This solution contributes to make more feasible the compression of 3D videos targeting real-time applications in power-constrained devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Müller, K., Schwarz, H., Marpe, D., Bartnik, C., Bosse, S., Brust, H., Hinz, T., Lakshman, H., Merkle, P., Rhee, F.H., Tech, G., Winken, M., Wiegand, T.: 3D high-efficiency video coding for multi-view video and depth data. IEEE Trans. Image Process. 22(9), 3366–3378 (2013)

    Article  MathSciNet  Google Scholar 

  2. Van Wallendael, G., Van Leuven, S., De Clock, J., Bruls, F., Van de Walle, R.: 3D video compression based on high efficiency video coding. IEEE Trans. Consum. Electron. 58(1), 137–145 (2012)

    Article  Google Scholar 

  3. Sullivan, G.J., Ohm, J.-R., Han, W.-J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  4. Tech, G., Wegner, K., Chen, Y., Yea, S.: Test model 9 of 3D-HEVC and MV-HEVC. In: 10th JCT-3V Meeting, Document JCT3V-J1003, Strasbourg (2014)

  5. Sullivan, G.J., Boyce, J.M., Chen, Y., Ohm, J.-R., Segall, C.A., Vetro, A.: Standardized extensions of high efficiency video coding (HEVC). IEEE J. Sel. Top. Signal Process. 7(6), 1001–1016 (2013)

    Article  Google Scholar 

  6. Zhu, C., Zhao, Y., Yu, L., Tanimoto, M.: 3D-TV System with depth-image-based rendering. Springer, New York (2013)

    Book  Google Scholar 

  7. Fehn, C.: Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV. In: SPIE stereoscopic displays and virtual reality systems XI, pp. 93–104 (2004)

  8. Budagavi, M.: Real-time image and video processing in portable and mobile devices. J. Real-Time Image Process. 1(1), 3–7 (2006)

    Article  Google Scholar 

  9. Mora, E.G., Jung, J., Cagnazzo, M.S., Pesquet-popescu, B.: Initialization, limitation and predictive coding of the depth and texture quadtree in 3D-HEVC. IEEE Trans. Circuits Syst. Video Technol. 24(9), 1554–1565 (2014)

    Article  Google Scholar 

  10. Mora, E.G., Jung, J., Cagnazzo, M., Pesquet-Popescu, B.: Depth video coding based on intra mode inheritance from texture. APSIPA Trans. Signal Inf. Process. 3(1), 1–13 (2014)

    Article  Google Scholar 

  11. Gu, Z., Zheng, J., Ling, N., Zhang, P.: Fast Intra prediction mode selection for intra depth map coding. In: 5th JCT-3V Meeting, Document JCT3V-E0238, Vienna (2013)

  12. Sanchez, G., Saldanha, M., Balota, G., Zatt, B., Porto, M., Agostini, L.: Complexity reduction for 3D-HEVC depth maps intra-frame prediction using smart edge detector algorithm. In: IEEE international conference on image processing (ICIP), pp. 3209–3213 (2014)

  13. Park, C.: Edge-based intramode selection for depth-map coding in 3D-HEVC. IEEE Trans. Image Process. 24(1), 155–162 (2014)

    Article  MathSciNet  Google Scholar 

  14. Gu, Z., Zheng, J., Ling, N., Zhang, P.: Fast depth modeling mode selection for 3D HEVC depth intra coding. In: IEEE international conference on multimedia and expo workshops (ICMEW), pp. 1–4 (2013)

  15. Silva, T., Agostini, L., Cruz, L.: Complexity reduction of depth intra coding for 3D video extension of HEVC. In: IEEE visual communications and image processing (VCIP), pp. 229–232 (2014)

  16. Sobel, I.: Machine vision for three-dimensional scenes. In: Freeman H (ed.). Academic Press, New York (1990)

  17. Lainema, J., Bossen, F., Han, W.-J., Min, J., Ugur, K.: Intra coding of the HEVC standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1792–1801 (2012)

    Article  Google Scholar 

  18. Yang, M., Grecos, C.: Fast intra encoding decisions for high efficiency video coding standard. J. Real-Time Image Process. 1–10 (2014). doi:10.1007/s11554-014-0445-7

  19. Kim, Y., Jun, D., Jung, S., Choi, J.S., Kim, J.: A fast intra-prediction method in HEVC using rate-distortion estimation based on Hadamard transform. ETRI J. 35(2), 270–280 (2013)

    Article  Google Scholar 

  20. Vincent, O. R., Folorunso, O.: A descriptive algorithm for sobel image edge detection. In: Informing Science and IT Education Conference (InSITE), pp. 97–107 (2009)

  21. Maini, R., Aggarwal, H.: Study and comparison of various image edge detection techniques. Int. J. Image Process. (IJIP) 3(1), 1–12 (2009)

    Google Scholar 

  22. Dang, P.: VLSI architecture for real-time image and video processing systems. J. Real-Time Image Process. 1(1), 57–62 (2006)

    Article  Google Scholar 

  23. Chaikalis, D.P., Sgouros, N.P., Maroulis, D.E., Sangriotis, M.S.: Real-time compression architecture for efficient coding in autostereoscopic displays. J. Real-Time Image Process. 5(1), 45–56 (2009)

    Article  Google Scholar 

  24. Osman, Z.E.M., Hussin, F.A., Ali, N.B.Z.: Optimization of processor architecture for image edge detection filter. In: 12th international conference on computer modelling and simulation (ICCMS), pp. 648–652 (2010)

  25. Abbasi, T.A., Abbasi, M.U.: A novel FPGA-based architecture for Sobel edge detection operator. Int. J. Electron. 94(9), 889–896 (2007)

    Article  MathSciNet  Google Scholar 

  26. Senthilkumaran, N., Rajesh, R.: Edge detection techniques for image segmentation—a survey of soft computing approaches. Int. J. Recent Trends Eng. Technol. 1(2), 250–254 (2009)

    Google Scholar 

  27. Pan, F., Lin, X., Rahardja, S., Lim, K.P., Li, Z.G., Wu, D., Wu, S.: Fast Mode decision algorithm for intraprediction in H.264/AVC video coding. IEEE Trans. Circuits Syst. Video Technol. 15(7), 813–822 (2005)

    Article  Google Scholar 

  28. Zhang, M., Qu, J., Bai, H.: Fast intra prediction mode decision algorithm for HEVC, Telkomnika Indones. J. Electr. Eng. 11(10), 5703–5710 (2013)

    Google Scholar 

  29. Lin, Y.C., Lai, J.C.: Edge density early termination algorithm for HEVC coding tree block. In: IEEE Int. Symp. Comput. Consum. Control (IS3C), pp. 39–42 (2014)

  30. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  31. Joint Collaborative Team on 3D Video (JCT-3V), HTM-12.1 reference software: https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/tags/HTM-12.1/ (2014)

  32. Müller, K., Vetro, A.: Common test conditions of 3DV core experiments. In: 7th JCT-3V Meeting, Document JCT3V-G1100, San José, US (2014)

  33. Bjøntegaard, G.: Calculation of average PSNR differences between RD curves. In: 13th VCEG Meeting, Document VCEG-M33, Austin (2001)

  34. Bjøntegaard, G.: Improvements of the BD-PSNR model. In: 35th VCEG Meeting, Document VCEG-AI11, Berlin (2008)

Download references

Acknowledgments

The authors would like to acknowledge the Brazilian National Council for the Improvement of Higher Education (CAPES, Brazil), Instituto de Telecomunicações (IT, Portugal), and the Foundation for Science and Technology (FCT, Portugal) through the project FCT/1909/27/2/2014/S for the financial support which made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thaísa Leal da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, T.L., Agostini, L.V. & da Silva Cruz, L.A. Fast intra prediction algorithm based on texture analysis for 3D-HEVC encoders. J Real-Time Image Proc 12, 357–368 (2016). https://doi.org/10.1007/s11554-015-0533-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-015-0533-3

Keywords

Navigation