Abstract
This paper describes a novel fast 3D filtering technique for enhancement of color video sequences using digital paths created on the image grid extended to a spatio-temporal domain. Numerous modifications improved impulsive noise filtering efficiency and cope with video artifacts such as Gaussian, impulsive and grain noise and still preserves and even enhances edges. It can even remove block compression artifacts and video flickering. Simulations show that it performs well under PSNR and SSIM metrics. It gives particularly good results for mixed Gaussian and impulse noise—PSNR is approximately 3 dB better than VMF3D and my previous spatial filters. The new algorithm allows video processing in real time for low resolution images; in the preliminary simulations, the processing rate of over 50 fps for the CIF (CIF standard: 352 \(\times\) 288 pixel) video sequences was obtained.













Similar content being viewed by others
References
Astola, J., Haavisto, P., Neuovo, Y.: Vector median filters. In: IEEE Proc., vol. 78, pp. 678–689 (1990)
Bennett, E.P., McMillan, L.: Video enhancement using per-pixel virtual exposures. ACM. Trans. Graph 24(3), 845–852 (2005)
Buades, A., Coll, B., Morel, J.M.: Nonlocal image and movie denoising. Int J Comp Vision 76(2), 123–139 (2008). doi:10.1007/s11263-007-0052-1
Buades, A., Coll, B., Morel, J.M.: Non-local means denoising. Image Process (2011). doi:10.5201/ipol.2011.bcm_nlm
Celebi, M.E., Kingravi, H.A., Aslandogan, Y.A.: Nonlinear vector filtering for impulsive noise removal from color images. CoRR abs/1009.0962 (2010)
Cuisenaire, O.: Distance transformations: fast algorithms and applications to medical image processing. PhD thesis, Universite Catholique de Louvain (1999)
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007). doi:10.1109/TIP.2007.901238
Dubois, E., Sabri, S.: Noise reduction in image sequences using motion-compensated temporal filtering. IEEE Trans. Commun. 32(7), 826–831 (1984)
Ghoniem, M., Chahir, Y., Elmoataz, A.: Nonlocal video denoising, simplification and inpainting using discrete regularization on graphs. Signal Processing 90(8), 2445–2455 (2010). http://www.sciencedirect.com/science/article/pii/S016516840900379X, special Section on Processing and Analysis of High-Dimensional Masses of Image and Signal Data
Maggioni, M., Boracchi, G., Foi, A., Egiazarian, K.: Video denoising, deblocking, and enhancement through separable 4-d nonlocal spatiotemporal transforms. IEEE Trans. Image Process. 21(9), 3952–3966 (2012). doi:10.1109/TIP.2012.2199324
Maggioni, M., Katkovnik, V., Egiazarian, K., Foi, A.: Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 22(1), 119–133 (2013). doi:10.1109/TIP.2012.2210725
Neumann, J.V.: Theory of Self-Reproducing Automata. University of Illinois Press, Champaign (1966)
Pandel, J.: Measuring of flickering artifacts in predictive coded video sequences. In: Ninth International Workshop on Image Analysis for Multimedia Interactive Services, 2008. WIAMIS ’08. pp. 231–234 (2008)
Plataniotis, K., Androutsos, D., Venetsanopoulos, A.: Colour image processing using fuzzy vector directional filters. In: Proceedings of the IEEE Workshop on Nonlinear Signal/Image Processing, Greece, pp. 535–538 (1995)
Plataniotis, K., Androutsos, D., Venetsanopoulos, A.: Fuzzy adaptive filters for multichannel image processing. Signal Process. J. 55(1), 93–106 (1996)
Plataniotis, K., Androutsos, D., Vinayagamoorthy, S., Venetsanopoulos, A.: Color image processing using adaptive multichannel filters. IEEE Trans. Image Proces. 6(7), 933–950 (1997)
Plataniotis, K., Androutsos, D., Venetsanopoulos, A.: Adaptive fuzzy systems for multichannel signal processing. Proc. IEEE 87(9), 1601–1622 (1999)
Ponomaryov, V., Montenegro, H., Rosales, A., Duchen, G.: Fuzzy 3d filter for color video sequences contaminated by impulsive noise. J. Real-Time Image Process (2012). doi:10.1007/s11554-012-0262-9
Radlak, K., Smolka, B.: Trimmed non-local means technique for mixed noise removal in color images. In: 2013 IEEE International Symposium on Multimedia (ISM), pp. 405–406 (2013)
Rosales-Silva, A.J., Gallegos-Funes, F.J., Ponomaryov, V.I.: Fuzzy directional (fd) filter for impulsive noise reduction in colour video sequences. J. Vis. Comun. Image Represent. 23(1), 143–149 (2012). doi:10.1016/j.jvcir.2011.09.007
Schmitt, M.: Lecture notes on geodesy and morphological measurements. Proceedings of the Summer School on Morphological Image and Signal Processing, pp. 36–91. Zakopane, Poland (1995)
Smolka, B.: Peer group switching filter for impulse noise reduction incolor images. Pattern. Recogn. Lett. 31(6), 484–495 (2010). doi:10.1016/j.patrec.2009.09.012
Smolka, B., Wojciechowski, K.: Random walk approach to image enhancement. Signal Process. 81(3), 465–482 (2001)
Smolka, B., Szczepanski, M., Plataniotis, K., Venetsanopoulos, A.N.: Fast modified vector median filter. In: Skarbek W (ed) Computer Analysis of Images and Patterns, LNCS, vol. 2124, Springer-Verlag, pp. 570–580 (2001)
Smolka, B., Plataniotis, K., Chydzinski, A., Szczepanski, M.: Self-adaptive algorithm of impulsive noise reduction in color images. Patt. Recogn. 35(8), 1771–1784 (2002)
Szczepanski, M.: Spatio-temporal filters in video stream processing. In: Burduk R, Kurzyński M, Woźniak M, Żołnierek A (eds) Computer Recognition Systems 4, Advances in Intelligent and Soft Computing, vol. 95, Springer Berlin Heidelberg, pp. 421–430 (2011a). doi: 10.1007/978-3-642-20320-6_44
Szczepanski, M.: Spatio-temporal fuzzy fdpa filter. In: Real P, Diaz-Pernil D, Molina-Abril H, Berciano A, Kropatsch W (eds) Computer Analysis of Images and Patterns, Lecture Notes in Computer Science, vol. 6855, Springer Berlin Heidelberg, pp. 316–323 (2011b). doi: 10.1007/978-3-642-23678-5_37
Szczepanski, M., Smolka, B., Plataniotis, K., Venetsanopoulos, A.: On the geodesic paths approach to color image filtering. Signal Processing 83(6), 1309–1342 (2003). http://www.sciencedirect.com/science/article/pii/S0165168403000586
Szczepanski, M., Smolka, B., Plataniotis, K., Venetsanopoulos, A.: On the distance function approach to color image enhancement. Discrete Applied Mathematics 139(1–3):283–305 (2004). http://www.sciencedirect.com/science/article/pii/S0166218X03005444
Szczepański, M.: Spatio-temporal digital path approach to video enhancement. In: Choraś RS (ed) Image Processing and Communications Challenges 6, Advances in Intelligent Systems and Computing, vol. 313, Springer International Publishing, pp. 219–226 (2015). doi: 10.1007/978-3-319-10662-5_27
Toivanen, P.: New geodesic distance transforms for gray scale images. Patt. Recogn. Lett. 17, 437–450 (1996)
Varghese, G., Wang, Z.: Video denoising based on a spatiotemporal gaussian scale mixture model. IEEE Trans. Circuits Syst. Video Technol. 20(7), 1032–1040 (2010)
Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Acknowledgments
This work was supported by the Polish National Science Center (NCN) under the Grant: DEC-2012/05/B/ST6/03428.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Szczepanski, M. Fast spatio-temporal digital paths video filter. J Real-Time Image Proc 16, 477–489 (2019). https://doi.org/10.1007/s11554-016-0561-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-016-0561-7