Skip to main content
Log in

Real time security framework for detecting abnormal events at ATM installations

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Automated Teller Machines (ATM) transactions are quick and convenient, but the machines and the areas surrounding them make people and ATM vulnerable to felonious activities if not properly put under the protection. Responsibility for providing security needs to be fixed, however, most machines have very less or no security. It is imminent to develop security framework that would identify event as their happening. In this paper we propose a robust computer vision approach for identifying abnormal activity at ATM premises in real time. For effective identification of activity, we propose a novel method in which different Window size is used to record magnitude of pixel intensity using root of sum of square method. To describe this pattern, histogram of gradients is used. Further random forest is applied to infer the most likely class. The average accuracy of our security system is 93.1 %. For validation of our approach we have tested it on two standard datasets, HMDB and Caviar. Our approach achieved 52.12 % accuracy on HMDB dataset and 81.48 % on Caviar dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Scott, M.S.: Robbery at automated teller machines. US Department of Justice, Office of Community Oriented Policing Services (2001)

    Google Scholar 

  2. Sharma, N.: Analysis of different vulnerabilities in auto teller machine transactions. J. Global Res. Comp. Sci. 3(3), 38–40 (2012)

    Google Scholar 

  3. Ahad, M.A.R., Tan, J.K., Kim, H., Ishikawa, S.: Motion history image: its variants and applications. Mach. Vision Appl. 23(2), 255–281 (2012)

    Article  Google Scholar 

  4. Davis, J.W., Bobick, A.F.: The representation and recognition of human movement using temporal templates, pp. 928–934. In Computer Vision and Pattern Recognition, IEEE Proceedings (1997)

    Google Scholar 

  5. Bobick, A. F., Davis, J. W.: The recognition of human movement using temporal templates: IEEE Transactions Pattern Analysis and Machine Intelligence, vol. 23, no. 3, pp. 257–267 (2001)

  6. Poppe, R.: A survey on vision based human action recognition. Image Vis. Comput. 28(6), 976–990 (2010)

    Article  Google Scholar 

  7. Debard, G., Karsmakers, P., Deschod, M., Vlaeyen, E., Bergh, J.V.D., Dejaeger, E.: Camera based fall detection using multiple features validated with real life video. Intell. Environ. Workshops 10, 441–450 (2011)

    Google Scholar 

  8. Mahbub, U., Imtiaz, H., Ahad, M. A. R.: Action recognition based on statistical analysis from clustered flow vectors. Signal, Image and Video Processing, 1–11 (2013)

  9. Gong, W., Gonzàlez, J., Roca, F. X.: Human action recognition based on estimated weak poses. EURASIP Journal on Advances in Signal Processing, 1–14 (2012)

  10. Paul, M., Haque, S. M., Chakraborty, S.: Human detection in surveillance videos and its applications-a review. EURASIP J. Adv. Signal Proc., 1–16 (2013)

  11. Kim, W., Lee, J., Kim, M., Oh, D., Kim, C.: Human action recognition using ordinal measure of accumulated motion. EURASIP J. Adv. Signal Proc., (2010)

  12. Laptev, I.: Space-time interest points. Int. J. Comput. Vision 64(2–3), 107–123 (2005)

    Article  Google Scholar 

  13. Laptev, I., Marszałek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. Proc. IEEE Conference Computer Vision and Pattern Recognition, 1–8 (2008)

  14. Wang, H., Klaser, A., Schmid, C., Liu, C. L.: Action recognition by dense trajectories. Proc. IEEE Conference Computer Vision and Pattern Recognition, 3169–3176 (2011)

  15. Wang, H., Klaser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion boundary descriptors for action recognition. Int. J. Comput. Vision 103(1), 60–79 (2013)

    Article  MathSciNet  Google Scholar 

  16. Wang, H., Finn, A., Erdinc, O., Vincitore, A.: Spatial-temporal structural and dynamics features for Video Fire Detection. In WACV, 513–519 (2013)

  17. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. Comput. Vision Pattern Recog. CVPR 1, 886–893 (2005)

    Google Scholar 

  18. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2012)

    Article  Google Scholar 

  19. Dollar, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532–1545 (2014)

    Article  Google Scholar 

  20. Scovanner, P., Saad, A., Mubarak, S.: A 3-dimensional sift descriptor and its application to action recognition. Proc. international conference on Multimedia, 357–360 (2007)

  21. Klaser, A., Marszałek, M., Schmid, C.: A spatio-temporal descriptor based on 3d-gradients. Proc. 19th British Machine Vision Conference, 275–1 (2008)

  22. Everts, I., Gemert, J. C. van, Gevers, T.: Evaluation of color stips for human action recognition. Proc. IEEE Conference Computer Vision and Pattern Recognition, 2850–2857 (2013)

  23. Souza, F., Valle, E., Cámara-Chávez, G., de Araújo, A.: An evaluation on color invariant based local spatiotemporal features for action recognition. In IEEE SIBGRAPI (2012)

  24. Sadanand, S., Corso, J. J.: Action bank: A high-level representation of activity in video. Proc. IEEE Conference Computer Vision and Pattern Recognition, 1234–1241 (2012)

  25. Le, Q. V., Zou, W. Y., Yeung, S. Y., Ng, A. Y.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. Comput. Vision Pattern Recog. (CVPR), IEEE, 3361–3368 (2011)

  26. Kuehne, H., Jhuang, H., Stiefelhagen, R., Serre, T.: HMDB: a large video database for human motion recognition. Proc. IEEE International Conference in computer vision (ICCV), 2556–2563 (2011)

  27. Nievas, E.B., Suarez, O.D., García, G.B., Sukthankar, R.: Violence detection in video using computer vision techniques, pp. 332–339. Computer Analysis of Images and Patterns. Springer, Berlin Heidelberg (2011)

    Google Scholar 

  28. Mayoraz, E., Alpaydin, E.: Support vector machines for multi-class classification, pp. 833–842. Engineering Applications of Bio-Inspired Artificial Neural Networks. Springer, Berlin Heidelberg (1999)

    Google Scholar 

  29. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2010)

    Article  Google Scholar 

  30. Schapire, R. E., Freund, Y., Bartlett, P., Lee, W. S.: Boosting the margin: A new explanation for the effectiveness of voting methods. Ann. Stat. 1651–1686 (1998)

  31. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. Image Processing 19(6), 1635–1650 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tuytelaars, T.: Dense interest points: Proc. IEEE Conference Computer Vision and Pattern Recognition, 2281–2288 (2010)

  33. Kovashka, A., Grauman, K.: Learning a hierarchy of discriminative space-time neighborhood features for human action recognition. Proc. IEEE Conference Computer Vision and Pattern Recognition, 2046–2053 (2010)

  34. Jiang, Y. G., Dai, Q., Xiangyang, X., Wei, L., Ngo, C. W.: Trajectory-based modeling of human actions with motion reference points. Proc. Computer Vision (ECCV), Berlin Heidelberg, 425–438 (2012)

  35. Wang, H., Schmid, C.: Action Recognition with Improved Trajectories. Proc. IEEE International Conference in Computer Vision (ICCV), 3551–3558 (2013)

  36. Jain, M., Jégou, H., Bouthemy, P.: Better exploiting motion for better action recognition. Proc. IEEE Conference Computer Vision and Pattern Recognition, 2555–2562 (2013)

  37. Shi, F., Petriu, E., Laganiere, R.: Sampling strategies for real-time action recognition. Proc. IEEE Conference Computer Vision and Pattern Recognition, 2595–2602 (2013)

  38. Caviar dataset. http://homepages.inf.ed.ac.uk/rbf/CAVIAR/. Accessed 20 Nov 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, V., Mittal, A., Gangodkar, D. et al. Real time security framework for detecting abnormal events at ATM installations. J Real-Time Image Proc 16, 535–545 (2019). https://doi.org/10.1007/s11554-016-0573-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-016-0573-3

Keywords

Navigation