Skip to main content
Log in

Parallel hybrid bispectrum-multi-frame blind deconvolution image reconstruction technique

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

This paper presents B-MFBD, a parallel hybrid of bispectrum speckle imaging (SI) and multi-frame blind deconvolution (MFBD) image reconstruction techniques for anisoplanatic, long horizontal path imaging. Our aim is to recover an enhanced version of a turbulence-corrupted image by massive parallelization of an SI and MFBD algorithms. The bispectrum SI technique is used in place of the multi-frame ensemble averaging to initialize the iterative parallel MFBD algorithm. B-MFBD technique, through massive parallelization, provides significantly large improvement in execution speed to both the bispectrum SI and MFBD parts of the hybrid algorithm. We report \(85\,\%\) improvement in processing time with respect to the sequential implementation of the same algorithm for a \(256 \times 256\), gray-scale image, with comparable improvement in image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. A is binary aperture function which is 1 in the aperture and 0 outside the aperture.

References

  1. Archer, G.E., Bos, J.P., Roggemann, M.C.: Mean squared error performance of MFBD nonlinear scene reconstruction using speckle imaging in horizontal imaging applications. In: Proc. SPIE, Visual information processing XXI, vol. 8399. Baltimore (2012)

  2. Archer, G.E., Bos, J.P., Roggemann, M.C.: Reconstruction of long horizontal-path images under anisoplanatic conditions using multiframe blind deconvolution. Opt. Eng. 52(8), 083,108–083,108 (2013)

  3. Archer, G.E., Bos, J.P., Roggemann, M.C.: Comparison of bispectrum, multiframe blind deconvolution and hybrid bispectrum-multiframe blind deconvolution image reconstruction techniques for anisoplanatic, long horizontal-path imaging. Opt. Eng. 53(4), 043,109-1-15 (2014)

  4. Ayers, G.R., Dainty, J.C.: Iterative blind deconvolution method and its applications. Opt. Lett. 13(7), 547–549 (1988)

    Article  Google Scholar 

  5. Ayers, G.R., Northcott, M.J., Dainty, J.C.: Knox-thompson and triple-correlation imaging through atmospheric turbulence. J. Opt. Soc. Am. 5(7), 963–985 (1988)

    Article  Google Scholar 

  6. Bartelt, H., Lohmann, A.W., Wirnitzer, B.: Phase and amplitude recovery from bispectra. Appl. Opt. 23(18), 3121–3129 (1984)

    Article  Google Scholar 

  7. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA. Tech. rep., NVIDIA technical report NVR-2008-004 (2008)

  8. Bos, J.P., Archer, G.E., Roggemann, M.C.: Using speckle imaging techniques as a starting point for MFBD scene reconstruction from long horizontal-path, turbulence-degraded imagery. In: Proc. SPIE: laser communication and propagation through the atmosphere and oceans II, vol. 8874. San Diego (2013)

  9. Bos, J.P., Paolini, A., Kelmelis, E.J., Roggemann, M.C.: Mean square error performance evaluation of a commercial speckle imaging system using simulated imagery. In: Proc. SPIE 9095, modeling and simulation for defense systems and applications IX, vol. 9095. Baltimore (2014)

  10. Bos, J.P., Roggemann, M.C.: Robustness of speckle imaging techniques applied to horizontal imaging scenarios. Opt. Eng. 51(8), 083,201-1–083,201-18 (2012)

  11. Bos, J.P., Roggemann, M.C.: Technique for simulating anisoplanatic image formation over long horizontal paths. Opt. Eng. 51(10), 101,704 (2012)

  12. Fraser, D., Thorpe, G., Lambert, A.: Atmospheric turbulence visualization with wide-area motion-blur restoration. J. Opt. Soc. Am. 16(7), 1751–1758 (1999)

    Article  Google Scholar 

  13. Hajmohammadi, S., Nooshabadi, S., Bos, J.P.: Massive parallel processing of image reconstruction from bispectrum through turbulence. Appl. Opt. 54(32), 9370–9378 (2015)

    Article  Google Scholar 

  14. Hirsch, M., Harmeling, S., Sra, S., Schölkopf, B.: Online multi-frame blind deconvolution with super-resolution and saturation correction. Astron. Astrophys. 531(A9) (2011)

  15. Law, N., Lane, R.: Blind deconvolution using least squares minimisation. Opt. Commun. 128(4–6), 341–352 (1996)

    Article  Google Scholar 

  16. Linderman, R., Spetka, S., Emeny, S., Fitzgerald, D.: Parallelizing a multi-frame blind deconvolution algorithm on clusters of multicore processors. IEEE Aerospace conference pp. 1–7 (2009)

  17. Matson, C.L., Borelli, K., Jefferies, S., Beckner, C.C., Keith, E.: Fast and optimal multiframe blind deconvolution algorithm for high-resolution ground-based imaging of space objects. Appl. Opt. 48(1), A75–A92 (2009). doi:10.1364/AO.48.000A75

  18. Nocedal, J., Wright, S.: Numerical optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2006)

  19. Ohtsubo, J., Nakajima, K.: Image recovery by simulated annealing with known fourier modulus. Opt. Commun. 128(3–4), 265–270 (1991)

    Article  Google Scholar 

  20. Parhi, K.K.: VLSI digital signal processing systems: design and implementation. Wiley, New Jersey (1999)

  21. Petersen, F. C., Paolini, A.: ATCOM: accelerated image processing for terrestrial long-range imaging through atmospheric effects. In: Proceeding of SPIE 8713, defense, security, and sensing: Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications X, Baltimore (2013)

  22. Petropulu, A.P., Pozidis, H.: Phase reconstruction from bispectrum slices. IEEE Trans. Signal Process. 46(2), 527–530 (1998). doi:10.1109/78.655441

  23. Roggemann, M.C., Welsh, B.M.: Imaging through turbulence. CRC Press, Boca Raton (1996)

  24. Rojas, F., Solé-Casals, J., Puntonet, C.: An evolutionary approach for blind inversion of wiener systems. In: Davies, M., James, C., Abdallah, S., Plumbley, M. (eds.) Independent component analysis and signal separation. Lecture notes in computer science, vol. 4666, pp. 260–267. Springer, Berlin (2007)

    Chapter  Google Scholar 

  25. Turner, N.H., ten Brummelaar, T.A., McAlister, H.A., Mason, B.D., Hartkopf, W.I., Roberts Jr., L.C.: Attainment of diffraction limited resolution in large telescopes by fourier analysing speckle patterns in star images. Astron. J. 6, 85–87 (1970)

    Google Scholar 

  26. Tyler, D.W., Schulze, K.J.: Fast phase spectrum estimation using the parallel part-bispectrum algorithm. Publ. Astron. Soc. Pac. 116, 65–76 (2004). doi:10.1086/380765

  27. Vorontsov, M.A., Carhart, G.W.: Anisoplanatic imaging through turbulent media: image recovery by local information fusion from a set of short-exposure images. J. Opt. Soc. Am. 18(6), 1312–1324 (2001)

    Article  Google Scholar 

  28. Wang, N., Chen, Y., Nakao, Z., Tamura, S.: Parallel-distributed blind deconvolution based on a self-organizing neural network. Appl. Opt. 38(20), 4345–4353 (1999)

    Article  Google Scholar 

  29. Xu, L., Ren, J.S., Liu, C., Jia, J.: Deep convolutional neural network for image deconvolution. In: Annual conference on neural information processing systems (NIPS). Montreal, Canada (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solmaz Hajmohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajmohammadi, S., Nooshabadi, S., Archer, G.E. et al. Parallel hybrid bispectrum-multi-frame blind deconvolution image reconstruction technique. J Real-Time Image Proc 16, 919–929 (2019). https://doi.org/10.1007/s11554-016-0577-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-016-0577-z

Keywords

Navigation