Skip to main content
Log in

A low-complexity MPEG-2 to H.264/AVC wavefront intra-frame transcoder architecture

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

We present a reconfigurable high-throughput MPEG-2 to H.264/AVC intra-frame transcoding architecture with wavefront data processing. The proposed FPGA implementation deals with the highly data-dependent critical path of the transcoder, and with low-complexity synchronization of the encoding and decoding stages. Furthermore, the implementation is applicable for reconfiguration and limits the communication bandwidth to the surrounding system through use of on-chip memory. The computationally demanding units of the MPEG-2 decoder have been implemented by processing 8 pixels in parallel, whereas H.264/AVC encoder engine utilizes a 4 × 4 block-level pipeline. The synchronous communication between the stages and full pipeline of the system is achieved by an intermediate memory buffer mechanism. A wavefront macroblock level scanning order based on the on-the-fly processing of consecutive macroblocks and on-chip memory organization are proposed. Achieved results represent a significant reduction of minimal required frequency compared to the state of the art for resolutions CIF, SD and HD1080p. Furthermore, the proposed transcoding core with encoder stage in full pipeline has maximal throughput of 1744 Mpixels/s that corresponds to processing of UHD 4320p resolution at 30 fps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Reference software for H.264/AVC codec JM18. (2012). http://www.iphome.hhi.de/suehring/uml/index.htm

  2. Adibelli, Y., Parlak, M., Hamzaoglu, I.: Computation and power reduction techniques for H.264 intra prediction. Microprocess. Microsyst. 36(3), 205–214 (2012)

    Article  Google Scholar 

  3. Atitallah, A.B., Loukil, H., Masmoudi, N.: FPGA design for H.264/AVC encoder. Int. J. Comput. Sci. Eng. Appl. 1(5), 119–138 (2011)

    Google Scholar 

  4. Bjontegard, G.: Calculation of average PSNR differences between RD-curves. In: ITU-T VCEG-M33 (2001)

  5. Chen, J.W., Chang, H.C., Wang, J.S., Guo, J.I.: A dynamic quality-adjustable H.264 intra coder. IEEE Trans. Consum. Electron. 57(3), 1203–1211 (2011)

    Article  Google Scholar 

  6. Chen, W.H., Smith, C., Fralick, S.: A fast computational algorithm for the discrete cosine transform. IEEE Trans. Commun. 25(9), 1004–1009 (1977)

    Article  MATH  Google Scholar 

  7. Cheng, C.C., Chang, T.S.: Fast three step intra prediction algorithm for 4 × 4 blocks in H.264. In: IEEE International Symposium on, Circuits and Systems: ISCAS 2005, pp. 1509–1512. IEEE (2005)

  8. Diniz, C., Zatt, B., Thiele, C., Susin, A., Bampi, S., Sampaio, F., Palomino, D., Agostini, L.: A high throughput H.264/AVC intra-frame encoding loop architecture for HD1080p. In: 2011 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 579–582. IEEE (2011)

  9. Diniz, C.M., Susin, A.A., Bampi, S.: Fpga design of H.264/AVC intra-frame prediction architecture for high resolution video encoding. In: 2012 VIII Southern Conference on Programmable Logic (SPL), pp. 1–6. IEEE (2012)

  10. He, G., Zhou, D., Fei, W., Chen, Z., Zhou, J., Goto, S.: High-performance H.264/AVC intra-prediction architecture for ultra high definition video applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(1), 76–89 (2014)

    Article  Google Scholar 

  11. Huang, Y.W., Hsieh, B.Y., Chen, T.C., Chen, L.G.: Analysis, fast algorithm, and VLSI architecture design for H.264/AVC intra frame coder. IEEE Trans. Circuits Syst. Video Technol. 15(3), 378–401 (2005)

    Article  Google Scholar 

  12. ITU-T, 1-IJ (1994) Generic coding of moving pictures and associated audio information—part 2: Video. In: ITU-T Recommendation H262 and ISO/IEC 13 818-2 (MPEG-2)

  13. Kalva, H., Petljanski, B.: Exploiting the directional features in MPEG-2 for H.264 intra transcoding. IEEE Trans. Consum Electron. 52(2), 706–711 (2006)

    Article  Google Scholar 

  14. Kuo, H.C., Wu, L.C., Huang, H.T., Hsu, S.T., Lin, Y.L.: A low-power high-performance H.264/AVC intra-frame encoder for 1080pHD video. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(6), 925–938 (2011)

    Article  Google Scholar 

  15. Li, G.L., Chen, T.Y., Shen, M.W., Wen, M.H., Chang, T.S.: 135-MHz 258-k gates VLSI design for all-intra H.264/AVC scalable video encoder. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(4), 636–647 (2013)

    Article  Google Scholar 

  16. Lin, Y.K., Ku, C.W., Li, D.W., Chang, T.S.: A 140-MHz 94-k gates HD1080p 30-frames/s intra-only profile H.264 encoder. IEEE Trans. Circuits Syst. Video Technol. 19(3), 432–436 (2009)

    Article  Google Scholar 

  17. Lu, Z.Y., Jia, K,B., Siu, W.C.: Low-complexity intra prediction algorithm for video down-sizing transcoder. In: 2011 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2011)

  18. Meng, B., Au, O.C., Wong, C.W., Lam, H.K.: Efficient intra-prediction algorithm in H.264. In: Proceedings of 2003 International Conference on Image Processing, 2003. ICIP 2003, vol. 3, pp III–837. IEEE (2003)

  19. Orlandić, M., Svarstad, K.: A low complexity H.264/AVC 4x4 intra prediction architecture with macroblock/block reordering. In: 2013 International Conference on ReConFigurable Computing and FPGAs (ReConFig). IEEE (2013)

  20. Pan, F., Rahardja, L.S., Lim, K.P., Wu, L.D., Wu, W.S., Zhu, C., Ye, W., Liang, Z.: Fast intra mode decision algorithm for H.264-AVC video coding. In: 2004 International Conference on Image Processing, 2004. ICIP’04, vol. 2, pp. 781–784. IEEE (2004)

  21. Ren, H., Fan, Y., Chen, X., Zeng, X.: A 16-pixel parallel architecture with block-level/mode-level co-reordering approach for intra prediction in 4k  × 2k H.264/AVC video encoder. In: 2012 17th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 801–806. IEEE (2012)

  22. Richardson, I.: The H.264 Advanced Video Compression Standard. Wiley (2010). http://books.google.no/books?id=LJoDiPnBzQ8C

  23. Smaoui, S., Loukil, H., Ben Atitallah, A., Masmoudi, N.: An efficient pipeline execution of H.264/AVC intra 4 × 4 frame design. In: 2010 7th International Multi-Conference on Systems Signals and Devices (SSD), pp. 1–5. IEEE (2010)

  24. Su, Y., Xin, J., Vetro, A., Sun, H., (2005) Efficient MPEG-2 to H.264, AVC intra transcoding in transform-domain. In: IEEE International Symposium on Circuits and Systems: ISCAS 2005, pp. 1234–1237. IEEE (2005)

  25. Wang, L.L., Siu, W.C.: H.264 fast intra mode selection algorithm based on direction difference measure in the pixel domain. In: IEEE International Conference on Acoustics, Speech and Signal Processing, 2009. ICASSP 2009, pp. 1037–1040. IEEE (2009)

  26. Wei, Z., Li, H., Ngan, K.N., (2007) An efficient intra mode selection algorithm for H. 264 based on fast edge classification. In: IEEE International Symposium on Circuits and Systems: ISCAS 2007, pp. 3630–3633. IEEE (2007)

  27. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits and Syst. Video Technol. 13(7), 560–576 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milica Orlandić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlandić, M., Svarstad, K. A low-complexity MPEG-2 to H.264/AVC wavefront intra-frame transcoder architecture. J Real-Time Image Proc 16, 1007–1023 (2019). https://doi.org/10.1007/s11554-016-0596-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-016-0596-9

Keywords

Navigation