Abstract
With the advent of efficient recognition techniques, animal biometric systems have gained more proliferation for the identification and monitoring of cattle. A cattle biometric system is a pattern recognition-based system for the identification of livestock. In this paper, we propose a novel muzzle point recognition based on Fisher locality preserving projection algorithm for the recognition of cattle in real time. We have captured images of animals using a surveillance camera and transferred them to the server by wireless network technology. The major contributions are as follows: (1) preparation of muzzle point database, (2) extraction of the salient set of features using proposed muzzle point recognition approach, and (3) evaluation and comparison analysis of the introduced method and several existing recognition algorithms on a standard benchmark protocol. The efficacy of proposed muzzle point recognition approach for cattle evaluates under identification settings and yields \(96.87\,\%\) recognition accuracy for identifying individual cattle. The proposed approach also valued the 10.25 sec recognition time for enrollment and identified individual cattle on different sizes of muzzle point images.




















Similar content being viewed by others
References
Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)
Ariff, M., Ismarani, I., Shamsuddin, N.: Rfid based systematic livestock health management system. In: IEEE Conference on Systems, Process and Control (ICSPC), pp. 111–116 (2014)
Awad, A.I.: From classical methods to animal biometrics: a review on cattle identification and tracking. Comput. Electron Agric. 123, 423–435 (2016)
Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face recognition by independent component analysis. IEEE Trans. Neural Netw. 13(6), 1450–1464 (2002)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces verdsus fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern. Anal. Mach. Intell. 19(7), 711–720 (1997)
Bharadwaj, S., Bhatt, H.S., Vatsa, M., Singh, R.: Domain specific learning for newborn face recognition. IEEE Trans. Inf. Forensics Secur. 11(7), 1630–1641 (2016)
Biswas, S.K., Milanfar, P.: One shot detection with laplacian object and fast matrix cosine similarity. IEEE Trans. Pattern Anal. Mach. Intell. 38(3), 546–562 (2016)
Botella, G., García, C.: Real-time motion estimation for image and video processing applications. J. Real-Time Image Process. 11(4), 625–631 (2016)
Cangar, O., Leroy, T., Guarino, M., Vranken, E., Fallon, R., Lenehan, J., Mee, J., Berckmans, D.: Model-based calving monitor using real time image analysis. Precis. Livest. Farming 7, 291–298 (2007)
Cangar, Ö., Leroy, T., Guarino, M., Vranken, E., Fallon, R., Lenehan, J., Mee, J., Berckmans, D.: Automatic real-time monitoring of locomotion and posture behaviour of pregnant cows prior to calving using online image analysis. Comput. Electron Agric. 64(1), 53–60 (2008)
Coutinho, V.A., Cintra, R.J., Bayer, F.M., Kulasekera, S., Madanayake, A.: A multiplierless pruned dct-like transformation for image and video compression that requires ten additions only. J Real-Time Image Process. 12(2), 247–255 (2016)
Dao, T.K., Le, T.L., Harle, D., Murray, P., Tachtatzis, C., Marshall, S., Michie, C., Andonovic, I.: Automatic cattle location tracking using image processing. In: Signal Processing Conference (EUSIPCO), 2015 23rd European, pp. 2636–2640 (2015)
Dell, A.I., Bender, J.A., Branson, K., Couzin, I.D., de Polavieja, G.G., Noldus, L.P., Pérez-Escudero, A., Perona, P., Straw, A.D., Wikelski, M., et al.: Automated image-based tracking and its application in ecology. Trends Ecol. Evol. 29(7), 417–428 (2014)
Diehl, C.P., Cauwenberghs, G.: Svm incremental learning, adaptation and optimization. Proc. Int. Joint Conf. Neural Netw. 4, 2685–2690 (2003)
Doherr, M., Audige, L.: Monitoring and surveillance for rare health-related events: a review from the veterinary perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356(1411), 1097–1106 (2001)
Duyck, J., Finn, C., Hutcheon, A., Vera, P., Salas, J., Ravela, S.: Sloop: a pattern retrieval engine for individual animal identification. Pattern Recognit. 48(4), 1059–1073 (2015)
El-Henawy, I., El Bakry, H.M., El Hadad, H.M.: Cattle identification using segmentation-based fractal texture analysis and artificial neural networks. Int. J. Electron. Inf. Eng. 4(2), 82–93 (2016)
Etemad, K., Chellappa, R.: Discriminant analysis for recognition of human face images. JOSA A 14(8), 1724–1733 (1997)
Finn, C., Duyck, J., Hutcheon, A., Vera, P., Salas, J., Ravela, S.: Relevance feedback in biometric retrieval of animal photographs. In: Pattern Recognition, Springer, pp. 281–290 (2014)
Gu, Q., Aoyama, T., Takaki, T., Ishii, I.: High frame-rate tracking of multiple color-patterned objects. J. Real-Time Image Process. 11(2), 251–269 (2016)
Hadad, H.M.E., Mahmoud, H.A., Mousa, F.A.: Bovines muzzle classification based on machine learning techniques. Procedia Comput. Sci. 65, 864–871 (2015)
He, X., Zhang, C., Zhang, L., Li, X.: A-optimal projection for image representation. IEEE Trans. Pattern Anal. Mach. Intell. 38(5), 1009–1015 (2016)
Hoy, J., Koehler, P., Patterson, R.: A microcomputer-based system for real-time analysis of animal movement. J. Neurosci. Methods 64(2), 157–161 (1996)
Huhtala, A., Suhonen, K., Mäkelä, P., Hakojärvi, M., Ahokas, J.: Evaluation of instrumentation for cow positioning and tracking indoors. Biosyst. Eng. 96(3), 399–405 (2007)
Huircán, J.I., Muñoz, C., Young, H., Von Dossow, L., Bustos, J., Vivallo, G., Toneatti, M.: Zigbee-based wireless sensor network localization for cattle monitoring in grazing fields. Comput. Electron. Agric. 74(2), 258–264 (2010)
Jain, A., Hong, L., Bolle, R.: On-line fingerprint verification. IEEE Trans. Pattern Anal. Mach. Intell. 19(4), 302–314 (1997)
Jegadeesan, S., Venkatesan, G.P.: Smart cow health monitoring, farm environmental monitoring and control system using wireless sensor networks. Int. J. Adv. Eng. Tech./Vol VII/Issue I/Jan–March 334, 339 (2016)
Johnston, A., Edwards, D.: Welfare implications of identification of cattle by ear tags. Vet. Rec. 138(25), 612–614 (1996)
Kim, T.K., Wong, S.F., Stenger, B., Kittler, J., Cipolla, R.: Incremental linear discriminant analysis using sufficient spanning set approximations. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07), pp. 1–8 (2007)
Kumar, S., Singh, S.K.: Feature selection and recognition of muzzle point image pattern of cattle by using hybrid chaos bfo and pso algorithms. In: Advances in Chaos Theory and Intelligent Control, Springer, pp. 719–751 (2016)
Kumar, S., Tiwari, S., Singh, S.K.: Face recognition for cattle. In: 2015 Third International Conference on Image Information Processing (ICIIP), pp. 65–72 (2015a). doi:10.1109/ICIIP.2015.7414742
Kumar, S., Tiwari, S., Singh, S.K.: Face recognition for cattle. In: 3rd IEEE International Conference on Image Information Processing (ICIIP), pp. 65–72 (2015b)
Kumar, S., Singh, S.K., Dutta, T., Gupta, H.P.: Poster: a real-time cattle recognition system using wireless multimedia networks. In: Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services Companion, ACM, New York, NY, USA, MobiSys ’16 Companion, pp. 48–48 (2016a). doi:10.1145/2938559.2948871
Kumar, S., Tiwari, S., Singh, S.K.: Face recognition of cattle: Can it be done? Proc. Natl. Acad. Sci., India Sect. A Phys. Sci. 86(2), 137–148 (2016b)
Laadjel, M., Bouridane, A., Nibouche, O., Kurugollu, F., Al-Maadeed, S.: An improved palmprint recognition system using iris features. J. Real-Time Image Process. 8(3), 253–263 (2013)
Leroy, T., Vranken, E., Van Brecht, A., Struelens, E., Janssen, A., Tuyttens, F., De Baere, K., Zoons, J., Sonck, B., Berckmans, D.: A quantitative computer vision method for on-line classification of poultry behavior in furnished cages. Trans. ASAE 49(3), 795–802 (2005)
Lind, N.M., Vinther, M., Hemmingsen, R.P., Hansen, A.K.: Validation of a digital video tracking system for recording pig locomotor behaviour. J. Neurosci. Methods 143(2), 123–132 (2005)
Liu, C., Wechsler, H.: Comparative assessment of independent component analysis (ica) for face recognition. In: International Conference on Audio and Video Based Biometric Person Authentication, Citeseer, pp. 22–24 (1999)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)
Lv, Z., Tek, A., Da Silva, F., Empereur-mot, C., Chavent, M., Baaden, M.: Game on, science—how video game technology may help biologists tackle visualization challenges. PLoS One 8(3), 1–13 (2013). doi:10.1371/journal.pone.0057990
Lv, Z., Chirivella, J., Gagliardo, P.: Bigdata oriented multimedia mobile health applications. J. Med. Syst. 40(5), 1–10 (2016a). doi:10.1007/s10916-016-0475-8
Lv, Z., Li, X., Zhang, B., Wang, W., Zhu, Y., Hu, J., Feng, S.: Managing big city information based on webvrgis. IEEE Access. 4, 407–415 (2016b)
Martiskainen, P., Järvinen, M., Skön, J.P., Tiirikainen, J., Kolehmainen, M., Mononen, J.: Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines. Appl. Anim. Behav. Sci. 119(1), 32–38 (2009)
Mörwald, T., Prankl, J., Zillich, M., Vincze, M.: Advances in real-time object tracking. J. Real-Time Image Process. 10(4), 683–697 (2015)
Ni, L.M., Liu, Y., Lau, Y.C., Patil, A.P.: Landmarc: indoor location sensing using active rfid. Wirel. Netw. 10(6), 701–710 (2004)
Nilsson, M., Herlin, A., Ardö, H., Guzhva, O., Åström, K., Bergsten, C.: Development of automatic surveillance of animal behaviour and welfare using image analysis and machine learned segmentation technique. Animal 9(11), 1859–1865 (2015)
Oczak, M., Ismayilova, G., Costa, A., Viazzi, S., Sonoda, L.T., Fels, M., Bahr, C., Hartung, J., Guarino, M., Berckmans, D., et al.: Analysis of aggressive behaviours of pigs by automatic video recordings. Comput. Electron. Agric. 99, 209–217 (2013)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Pisano, E.D., Zong, S., Hemminger, B.M., DeLuca, M., Johnston, R.E., Muller, K., Braeuning, M.P., Pizer, S.M.: Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. J. Digit. Imaging 11(4), 193–200 (1998)
Poiesi, F., Cavallaro, A.: Predicting and recognizing human interactions in public spaces. J. Real-Time Image Process. 10(4), 785–803 (2015)
Rodríguez-Prieto, V., Vicente-Rubiano, M., Sanchez-Matamoros, A., Rubio-Guerri, C., Melero, M., Martinez-Lopez, B., Martinez-Aviles, M., Hoinville, L., Vergne, T., Comin, A., et al.: Systematic review of surveillance systems and methods for early detection of exotic, new and re-emerging diseases in animal populations. Epidemiol. Infect. 143(10), 2018–2042 (2015)
Saeidi, R., Astudillo, R.F., Kolossa, D.: Uncertain LDA: including observation uncertainties in discriminative transforms. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1479–1488 (2016)
Seo, H.J., Milanfar, P.: Face verification using the lark representation. IEEE Trans. Inf. Forensics Secur. 6(4), 1275–1286 (2011)
Shao, J., Xin, H., Harmon, J.: Comparison of image feature extraction for classification of swine thermal comfort behavior. Comput. Electron. Agric. 19(3), 223–232 (1998)
Tan, K., Wasif, A., Tan, C.: Objects tracking utilizing square grid rfid reader antenna network. J. Electromagn. Waves Appl. 22(1), 27–38 (2008)
Tillett, R., Onyango, C., Marchant, J.: Using model-based image processing to track animal movements. Comput. Electron. Agric. 17(2), 249–261 (1997)
Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’91), pp. 586–591 (1991)
Wardrope, D.: Problems with the use of ear tags in cattle. Vet. Rec. (United Kingdom) 37(26), 675 (1995)
Weng, J., Zhang, Y., Hwang, W.S.: Candid covariance-free incremental principal component analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 1034–1040 (2003)
Wolf, L., Hassner, T., Taigman, Y.: The one-shot similarity kernel. In: 12th IEEE International Conference on Computer Vision, pp. 897–902 (2009)
Wolf, L., Hassner, T., Taigman, Y.: Effective unconstrained face recognition by combining multiple descriptors and learned background statistics. IEEE Trans. Pattern Anal. Mach. Intell. 33(10), 1978–1990 (2011)
Yang, J., Lin, Y., Gao, Z., Lv, Z., Wei, W., Song, H.: Quality index for stereoscopic images by separately evaluating adding and subtracting. PLoS One 10(12), 1–19 (2016). doi:10.1371/journal.pone.0145800
Yang, L., Jin, R.: Distance Metric Learning: A Comprehensive Survey. Michigan State Universiy, vol. 2 (2006)
Zhu, Q., Ren, J., Barclay, D., McCormack, S., Thomson, W.: Automatic animal detection from kinect sensed images for livestock monitoring and assessment. In: IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), pp. 1154–1157 (2015)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kumar, S., Singh, S.K., Singh, R.S. et al. Real-time recognition of cattle using animal biometrics. J Real-Time Image Proc 13, 505–526 (2017). https://doi.org/10.1007/s11554-016-0645-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-016-0645-4