Skip to main content
Log in

Flexible architectures for retinal blood vessel segmentation in high-resolution fundus images

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Blood vessel segmentation from high-resolution fundus images is a necessary step in several retinal pathologies detection. Automatic blood vessel segmentation is a computing-intensive task, which raises the need for acceleration with hardware architectures. In this paper, we propose two architectures for blood vessel segmentation using a matched filter (MF). The first architecture is a scalable hardware architecture, while the second one is an application-specific instruction-set processor. An efficient, real-time hardware implementation of the algorithm is made possible through parallel processing and efficient resource sharing. A tool for the automatic generation of particularized HDL descriptions of the architecture is proposed. The tool starts from a common architecture template and takes as input the parameters of the MF. A designer thus gains a significant amount of flexibility and productivity with the parameter selection problem and the evaluation of corresponding implementations. Several designs were verified and implemented on an FPGA platform. Performance in terms of area utilization and maximum frequency are reported. The results show significant improvement over state-of-the-art implementations, by up to a factor of 14× for high-resolution fundus images. The second architecture is based on the Tensilica Xtensa LX processor. With only two additional custom instructions requiring an additional 4× the area of the basic processor, the ASIP achieves a significant speedup of 7.76× when compared to the basic processor, while retaining all its flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Cheung, N., Mitchell, P., Wong, T.Y.: Diabetic retinopathy. Lancet 376, 124–136 (2010)

    Article  Google Scholar 

  2. Abramoff, M.D., Niemeijer, M., Russell, S.R.: Automated detection of diabetic retinopathy: barriers to translation into clinical practice. Expert Rev. Med. Devices 7, 287–296 (2010)

    Article  Google Scholar 

  3. Niemeijer, M., van Ginneken, B., Staal, J., Suttorp-Schulten, M.S., Abramoff, M.D.: Automatic detection of red lesions in digital color fundus photographs. IEEE Trans. Med. Imaging 24, 584–592 (2005)

    Article  Google Scholar 

  4. Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., et al.: Blood vessel segmentation methodologies in retinal images—a survey. Comput. Methods Progr. Biomed. 108, 407–433 (2012)

    Article  Google Scholar 

  5. Yin, Y., Adel, M., Guillaume, M., Bourennane, S.: A probabilistic based method for tracking vessels in retinal images. In: 2010 IEEE International Conference on Image Processing, pp. 4081–4084 (2010)

  6. You, X., Peng, Q., Yuan, Y., Cheung, Y.-M., Lei, J.: Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recognit. 44, 2314–2324 (2011)

    Article  Google Scholar 

  7. Marin, D., Aquino, A., Gegundez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30, 146–158 (2011)

    Article  Google Scholar 

  8. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging 8, 263–269 (1989)

    Article  Google Scholar 

  9. Al-Rawi, M., Qutaishat, M., Arrar, M.: An improved matched filter for blood vessel detection of digital retinal images. Comput. Biol. Med. 37, 262–267 (2007)

    Article  Google Scholar 

  10. Zhang, B., Zhang, L., Zhang, L., Karray, F.: Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput. Biol. Med. 40, 438–445 (2010)

    Article  Google Scholar 

  11. Dalmau, O., Alarcon, T.: MFCA: matched filters with cellular automata for retinal vessel detection. In: Batyrshin I., Sidorov G. (eds.) Advances in Artificial Intelligence: 10th Mexican International Conference on Artificial Intelligence, MICAI 2011, Puebla, Mexico, November 26–December 4, 2011, Proceedings, Part I. Springer, Berlin, pp. 504–514 (2011)

  12. Zolfagharnasab, H., Naghsh-Nilchi, A.R.: Cauchy based matched filter for retinal vessels detection. J. Med. Signals Sens. 4, 1–9 (2014)

    Google Scholar 

  13. Nguyen, U.T.V., Bhuiyan, A., Park, L.A.F., Ramamohanarao, K.: An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognit. 46, 703–715 (2013)

    Article  Google Scholar 

  14. Zana, F., Klein, J.C.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10, 1010–1019 (2001)

    Article  MATH  Google Scholar 

  15. Xiaoyi, J., Mojon, D.: Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 25, 131–137 (2003)

    Article  Google Scholar 

  16. Lam, B.S.Y., Yan, H.: A novel vessel segmentation algorithm for pathological retina images based on the divergence of vector fields. IEEE Trans. Med. Imaging 27, 237–246 (2008)

    Article  Google Scholar 

  17. Lam, B.S., Gao, Y., Liew, A.W.: General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Trans. Med. Imaging 29, 1369–1381 (2010)

    Article  Google Scholar 

  18. Argüello, F., Vilariño, D.L., Heras, D.B., Nieto, A.: GPU-based segmentation of retinal blood vessels. J. Real-Time Image Process 1–10 (2014). doi:10.1007/s11554-014-0469-z

  19. Palomera-Perez, M.A., Martinez-Perez, M.E., Benitez-Perez, H., et al.: Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE Trans. Inf. Technol. Biomed. 14, 500–506 (2010)

    Article  Google Scholar 

  20. Savarimuthu, T.R., Kjær-Nielsen, A., Sørensen, A.S.: Real-time medical video processing, enabled by hardware accelerated correlations. J. Real-Time Image Proc. 6, 187–197 (2011)

    Article  Google Scholar 

  21. Alonso-Montes, C., Vilariño, D.L., Dudek, P., Penedo, M.G.: Fast retinal vessel tree extraction: a pixel parallel approach. Int. J. Circuit Theory Appl. 36, 641–651 (2008)

    Article  Google Scholar 

  22. Nieto, A., Brea, V.M., Vilarino, D.L.: FPGA-accelerated retinal vessel-tree extraction. In: 2009 International Conference on Field Programmable Logic and Applications, pp. 485–488 (2009)

  23. Koukounis, D., Ttofis, C., Papadopoulos, A., Theocharides, T.: A high performance hardware architecture for portable, low-power retinal vessel segmentation. Integr. VLSI J. 47, 377–386 (2014)

    Article  Google Scholar 

  24. Krause, M., Alles, R.M., Burgeth, B., Weickert, J.: Fast retinal vessel analysis. J. Real-Time Image Proc. 11, 413–422 (2016)

    Article  Google Scholar 

  25. Hoover, A.D., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19, 203–210 (2000)

    Article  Google Scholar 

  26. Bernardes, R., Serranho, P., Lobo, C.: Digital ocular fundus imaging: a review. Ophthalmologica (2011) DCOM- 20120106

  27. Bendaoudi, H., Cheriet, F., Tahar, H.B., Langlois, J.M.P.: A scalable hardware architecture for retinal blood vessel detection in high resolution fundus images. In: 2014 Conference on Design and Architectures for Signal and Image Processing (DASIP), pp. 1–6 (2014)

  28. Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23, 501–509 (2004)

    Article  Google Scholar 

  29. Seoud, L., Hurtut, T., Chelbi, J., Cheriet, F., Langlois, J.M.P.: Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Trans. Med. Imaging 35, 1116–1126 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by: Canada’s Natural Sciences and Engineering Research Council NSERC, Diagnos Inc., CMC Microsystems and the Regroupement Stratégique en Microsystèmes du Québec (ReSMIQ). The authors would like to thank Ahmed M. Abdelsalam for discussions on the contents and presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houssem Ben Tahar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bendaoudi, H., Cheriet, F., Manraj, A. et al. Flexible architectures for retinal blood vessel segmentation in high-resolution fundus images. J Real-Time Image Proc 15, 31–42 (2018). https://doi.org/10.1007/s11554-016-0661-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-016-0661-4

Keywords

Navigation