We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

A unified architecture for fast HEVC intra-prediction coding

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

The high efficiency video coding (HEVC) is the new video coding standard, which obtains over 50% bit rate savings compared with H.264/AVC for the same perceptual quality. Intra-prediction coding in HEVC achieves high coding performance in expense of high computational complexity, due to the exhaustive evaluation of all available coding units (CU) sizes, with up to 35 prediction modes for each CU, selecting the one with the lower rate distortion cost, among other new features. This paper presents a Unified Architecture to form a novel fast HEVC intra-prediction coding algorithm, denoted as fast partitioning and mode decision. This approach combines a fast partitioning decision algorithm, based on decision trees, which are trained using machine learning techniques, and a fast mode decision algorithm, based on a novel texture orientation detection algorithm, which computes the mean directional variance along a set of co-lines with rational slopes using a sliding window over the prediction unit. Both algorithms proposed apply a similar approach, exploiting the strong correlation between several image features and the optimal CTU partitioning and the optimal prediction mode. The key point of the combined approach is that both algorithms compute the image features with low complexity, and the partition decision and the mode decision can also be taken with low complexity, using decision trees (if-else statements) and by selecting the minimum directional variance between a reduced set of directions. This approach can be implemented using any combination of nodes, obtaining a wide range of time savings, from 44 to 67%, and light penalties from 1.1 to 4.6%. Comparisons with similar state-of-the-art works show the proposed approach achieves the best trade-off between complexity reduction and rate distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. High Efficiency Video Coding, Rec. ITU-T H.265 and ISO/IEC 23008-2 (2013)

  2. Advanced Video Coding for Generic Audiovisual Services, Rec. ITU-T H.264 and ISO/IEC 14496-10 (MPEG-4 AVC) (2012)

  3. Ohm, J., Sullivan, J.G.J., Schwarz, H., Thiow, T., Wiegand, T.: Comparison of the coding efficiency of video coding standards—including high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 22(12), 1669–1684 (2012)

    Article  Google Scholar 

  4. Prabhakar, B., Reddy, D.K.: Analysis of video coding standards using PSNR and bit rate saving. In: International Conference on Signal Processing and Communication Engineering Systems (SPACES), pp. 306–308 (2015)

  5. Nguyen, T., Marpe, D.: Performance analysis of HEVC-based intra coding for still image compression. In: Picture Coding Symposium (PCS), pp. 233–236 (2012)

  6. Il-Koo, K., Min, J., Lee, T., Woo-Jin, H., JeongHoon, P.: Block partitioning structure in the HEVC standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1697–1706 (2012)

    Article  Google Scholar 

  7. Min, J., Lee, S., Kim, I., Han, W.-J., Lainema, J., Ugur, K.: Unification of the directional intra prediction methods in TMuC. In: JCTVC-B100, Geneva, Switzerland (2010)

  8. Sullivan, G.J., Wiegand, T.: Rate-distortion optimization for video compression. IEEE Signal Process. Mag. 15(6), 74–90 (1998)

    Article  Google Scholar 

  9. Bossen, F., Bross, B., Sühring, K., Flynn, D.: HEVC complexity and implementation analysis. IEEE Trans. Circuits Syst. Video Technol. 22, 1685–1696 (2012)

    Article  Google Scholar 

  10. Correa, G., Assuncao, P., Agostini, L., da Silva Cruz, L.A.: Complexity control of high efficiency video encoders for power-constrained devices. IEEE Trans. Consum. Electron. 57(4), 1866–1874 (2011)

    Article  Google Scholar 

  11. Khan, M., Shafique, M., Grellert, M., Henkel, J.: Hardware-software collaborative complexity reduction scheme for the emerging HEVC intra encoder. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 125–128, 18–22 March 2013

  12. Sullivan, G.J., Ohm, J., Woo-Jin, H., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  13. Lainema, J., Bossen, F., Han, W.-J., Min, J., Ugur, K.: Intra coding of the HEVC standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1792–1801 (2012)

    Article  Google Scholar 

  14. Joint Collaborative Team on Video Coding Reference Software, ver. HM 16.6. https://hevc.hhi.fraunhofer.de/

  15. Piao, Y., Min, J.H., Chen, J. (2010) Encoder improvement of unified intra prediction. In: JCTVC-C207, JCT-VC of ISO/IEC and ITU-T, Guangzhou, China (2010)

  16. Sun, H., Zhou, D., Goto, S.: A low-complexity HEVC intra prediction algorithm based on level and mode filtering. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1085–1090

  17. Huang, H., Zhao, Y., Lin, C., Bai, H.: Fast bottom-up pruning for HEVC intraframe coding. In: Visual Communications and Image Processing (VCIP), pp. 1–5 (2013)

  18. Cen, Y., Wang, W., Yao, X.: A fast CU depth decision mechanism for HEVC. Inf. Process. Lett. 115(9), 719–724 (2015)

    Article  MathSciNet  Google Scholar 

  19. Tian, G., Goto, S.: Content adaptive prediction unit size decision algorithm for HEVC intra coding. In: Picture Coding Symposium (PCS), pp. 405–408 (2012)

  20. Khan, M., Shafique, M., Henkel, J.: An adaptive complexity reduction scheme with fast prediction unit decision for HEVC intra encoding. In: IEEE International Conference on Image Processing (ICIP), pp. 1578–1582 (2013)

  21. Jiang, W., Hanjie, M., Chen, Y.: Gradient based fast mode decision algorithm for intra prediction in HEVC. In: International Conference on Consumer Electronics, Communications and Networks (CECNet), pp. 1836–1840 (2012)

  22. Chen, G., Liu, Z., Ikenaga, T., Dongsheng, W.: Fast HEVC intra mode decision using matching edge detector and kernel density estimation alike histogram generation. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 53–56 (2013)

  23. Yan, S., Hong, L., He, W., Wang, Q.: Group-based fast mode decision algorithm for intra prediction in HEVC. In: International Conference on Signal Image Technology and Internet Based Systems (SITIS), pp. 225–229 (2012)

  24. da Silva, T.L., Agostini, L.V., da Silva Cruz, L.A.: Fast HEVC intra prediction mode decision based on EDGE direction information. In: European Signal Processing Conference (EUSIPCO), pp. 1214–1218 (2012)

  25. Yao, Y., Xiaojuan, L., Yu, L.: Fast intra mode decision algorithm for HEVC based on dominant edge assent distribution. Multimed. Tools Appl. J. 75, 1–19 (2014)

    Google Scholar 

  26. Shen, L., Zhang, Z., An, P.: Fast CU size decision and mode decision algorithm for HEVC intra coding. IEEE Trans. Consum. Electron. 59(1), 207–213 (2013)

    Article  Google Scholar 

  27. Kim, Y., Jun, D., Jung, S., Soo Choi, J., Kim, J.: A fast intra-prediction method in HEVC using rate-distortion estimation based on Hadamard transform. ETRI J. 35(2), 270–280 (2013)

    Article  Google Scholar 

  28. Bossen, F.: Common test conditions and software reference configurations, document JCTVC-L1100, ITU-T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC), 12th Meeting: Geneve, CH, 14–23 Jan 2013

  29. ITU-T Recommendation P.910: Subjective Video Quality Assessment Methods for Multimedia Applications. International Telecommunication Union, Geneva (1999)

    Google Scholar 

  30. Pratt, W.K.: Digital Image Processing: PIKS Inside, 3rd edn. Wiley, New York (2001)

    Book  Google Scholar 

  31. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2003)

    Article  Google Scholar 

  32. Chan, T.F., Golub, G.H., LeVequ, R.J.: Updating formulae and a pairwise algorithm for computing sample variances. Technical Report. Stanford University, Stanford, CA, USA (1979)

  33. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  34. Chen, L., Lin, J.: A study on review manipulation classification using decision tree. In: International Conference on Service Systems and Service Management (ICSSSM), pp. 680–685 (2013)

  35. Fernández-Escribano, G., Kalva, H., Cuenca, P., Orozco-Barbosa, L., Garrido, A.: A fast MB mode decision algorithm for MPEG-2 to H.264 P-frame transcoding. IEEE Trans. Circuits Syst. Video Technol. 18(2), 172–185 (2008)

    Article  Google Scholar 

  36. Hulse, J.V., Khoshgoftaar, T.M., Napolitano, A.: Experimental perspectives on learning from imbalanced data. In: Proceedings of the 24th International Conference on Machine Learning, pp. 935–942 (2007)

  37. Gupta, S., Mazumdar, S.G.: Sobel edge detection algorithm. Int. J. Comput. Sci. Manag. Res. 2(2), 1578–1583 (2013)

    Google Scholar 

  38. Jayachandra, D., Makur, A.: Directional variance: a measure to find the directionality in a given image segment. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1551–1554 (2010)

  39. Lei, Z., Makur, A.: Enumeration of downsampling lattices in two-dimensional multirate systems. IEEE Trans. Signal Process. 56(1), 414–418 (2008)

    Article  MathSciNet  Google Scholar 

  40. Velisavljevic, V., Beferull-Lozano, B., Vetterli, M., Dragotti, P.L.: Directionlets: anisotropic multidirectional representation with separable filtering. IEEE Trans. Image Process. 15(7), 1916–1933 (2006)

    Article  Google Scholar 

  41. Bjøntegaard, G.: Calculation of average PSNR differences between RD-curves. ITU-T SG16 Q.6 Document, VCEG-M33, Austin, US (2001)

Download references

Acknowledgements

This work was supported by the MINECO and European Commission (FEDER funds) under the Projects TIN2012-38341-C04-04 and TIN2015-66972-C5-2-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Ruiz.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz, D., Fernández-Escribano, G., Martínez, J.L. et al. A unified architecture for fast HEVC intra-prediction coding. J Real-Time Image Proc 16, 1825–1844 (2019). https://doi.org/10.1007/s11554-017-0685-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-017-0685-4

Keywords

Navigation