Abstract
In this paper, we present a GPU-based implementation of an elastic shape registration approach in implicit spaces. Shapes are represented using signed distance functions, while deformations are modeled by cubic B-splines. In a variational framework, an incremental free form deformation strategy is adopted to handle smooth deformations through an adaptive size control lattice grid. The grid control points are estimated by a closed-form solution which avoids the gradient descent iterations. However, even this solution is very far from real time. We show in detail that such an algorithm is computationally expensive with a time complexity of \({\mathbf O} (NCP_xNCP^2X^2Y^2)\) where \(NCP_x\) and NCP are the grid lattice resolution parameters in the shape domain of size \(X\times Y\). Moreover, the problem becomes more time-consuming with the increase in the number of control points because this requires the execution of the incremental algorithm several times. The closed-form solution was implemented using eight different GPU techniques. Our experimental results demonstrate speedups of more than \(150{\times}\) compared to the \(\texttt {C}\) implementation on a CPU.






Similar content being viewed by others
References
Huang, X., Paragios, N., Metaxas, D.N.: Shape registration in implicit spaces using information theory and free form deformations. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1303–1318 (2006)
Diciotti, S., Lombardo, S., Falchini, M., Picozzi, G., Mascalchi, M.: Automated segmentation refinement of small lung nodules in CT scans by local shape analysis. IEEE Trans. Biomed. Eng. 58(12), 3418–28 (2011)
El Abd Munim, H.E., Farag, A.A., Farag, A.A.: Shape representation and registration in vector implicit spaces: adopting a closed-form solution in the optimization process. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 763–768 (2013)
Farag, A.A., Abd El Munim, H.E., Graham, J.H., Farag, A.A.: A novel approach for lung nodules segmentation in chest CT using level sets. IEEE Trans. Image Process. 22(12), 5202–5213 (2013)
Aslan, M.A., Shalaby, A., El Abd Munim, A.A., Farag, A.A.: Probabilistic shape-based segmentation method using level sets. Comput. Vis. (IET) 8(3), 182–194 (2014)
Sahillioglu, Y., Kavan, L.: Skuller: a volumetric shape registration algorithm for modeling skull deformities. Med. Image Anal. 23(1), 15–27 (2015)
Dokken, T., Hagen, T.R., Hjelmervik, J.M.: The GPU as a high performance computational resource. In: Proceedings of the 21st Spring Conference on Computer Graphics (SCCG), pp. 21–26. ACM (2005)
Harris, M., Sengupta, S., Owens, J.D.: Parallel Prefix Sums (Scan) with Cuda, GPU Gems 3. Addison-Wesley, New York (2007)
Hwu, W.-M.: GPU Computing Gems, Jade Edition, vol. 2, 1st edn. Morgan Kaufmann/Elsevier, Burlington (2012)
Glaskowsky, P.N.: NVIDIAs Fermi: The First Complete GPU Computing Architecture. NVIDIA Corporation, Whitepaper (2009)
Kainz, B., Steinberger, M., Wein, W., Kuklisova-Murgasova, M., Malamateniou, C., Keraudren, K., Torsney-Weir, T., Rutherford, M., Aljabar, P., Hajnal, J.V., Rueckert, D.: Fast volume reconstruction from motion corrupted stacks of 2D slices. IEEE Trans. Med. Imaging 34(9), 1901–1913 (2015)
Linjia, H., Nooshabadi, S., Ahmadi, M.: Massively parallel KD-tree construction and nearest neighbor search algorithms. In: IEEE International Symposium on circuits and systems (ISCAS), pp. 2752–2755 (2015)
Ahn, I.J., Kim, J.H., Chang, Y.J., Jeong, K.Y., Beom Ra, J.: LOR-based reconstruction for super-resolved 3D PET image on GPU. IEEE Trans. Nucl Sci 62(3), 859–868 (2015)
Guerriero, A., Anelli, V.W., Pagliara, A., Nutricato, R., Nitti, D.O.: Efficient implementation of InSAR time-consuming algorithm kernels on GPU environment, geoscience and remote sensing symposium (IGARSS), pp. 4264–4267. IEEE International (2015)
Lin Yong, Du, Zhi Zhou, E.Y., Thomas, N.L.: An efficient parallel approach for sclera vein recognition. IEEE Trans. Inf. Forensics Secur 9(2), 147–157 (2014)
Saponara, S., et al.: A multi-processor NoC-based architecture for real-time image/video enhancement. J Real Time Image Process 8(1), 111–125 (2013)
Saponara, S., et al.: Motion estimation and CABAC VLSI co-processors for real-time high-quality H. 264/AVC video coding. Microprocess. Microsyst. 34(7), 316–328 (2010)
Schenke, S., Wunsche, B.C.: GPU-Based Volume Segmentation. Image and Vision Computing, New Zealand (2005)
Kohn, A., Drexl, J., Ritter, F., Konig, M., Peitgen, H.O.: GPU Accelerated Image Registration in Two and Three Dimensions, Bildverarbeitung fur die Medizin, pp. 261–265. Springer, Heidelberg (2006)
Saxena, V., Rohrer, J., Gong, L.: A parallel GPU algorithm for mutual information based 3D nonrigid image registration. Lecture Notes in Computer Science, Euro-Par 6272, 223–234 (2010)
Shams, R., Sadeghi, P., Kennedy, R.A., Hartley, R.I.: A survey of medical image registration on multicore and the GPU. IEEE Sig. Process. Mag. 50 (2010)
Cao, T., Tang, K., Mohamed, A., Tan, T.: Parallel banding algorithm to compute exact distance transform with the GPU. In: Proceedings of the ACM SIGGRAPH symposium on interactive 3D graphics and games, pp. 83–90 (2010)
Fulkerson, B., Soatto, S.: Really quick shift: image segmentation on a GPU. In: Proceedings of the workshop on computer vision using GPUs (2010)
Narayanaswamy, A., Dwarakapuram, S., Bjornsson, C., Cutler, B., Shain, W., Roysam, B.: Robust adaptive 3-D segmentation of vessel laminae from fluorescence confocal microscope images and parallel GPU implementation. IEEE Trans. Med. Imaging 29, 583–597 (2010)
Ruijters, D., ter Haar Romeny, B.M., Suetens, P.: GPU-accelerated elastic 3D image registration for intra-surgical applications. Comput. Methods Prog. Biomed. 103, 104–112 (2011)
Park,.I.K., Singhal, N., Lee, M.H., Cho, S., Kim, C.W.: Design and performance evaluation of image processing algorithms on GPUs. IEEE Trans. Parallel Distrib. Syst. 2(1), 91–104 (2011)
Broxvall, M., Emilsson, K., Thunberg, P.: Fast GPU based adaptive filtering of 4D echocardiography. IEEE Trans. Med. Imaging 31, 1165–1172 (2012)
Collins, M., Xu, J., Grady, L., Singh, V.: Random walks based multiimage segmentation: quasiconvexity results and GPU-based solutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1656–1663 (2012)
Gomez-Luna, J., Gonzalez-Linares, J., Benavides, J., Guil, N.: An optimized approach to histogram computation on GPU. Mach. Vis. Appl. 24(5), 899–908 (2013)
Ruijters, D., Thevenaz, P.: GPU prefilter for accurate cubic B-spline interpolation. Comput. J. 55(1), 15–20 (2012)
Otake, Y., Armand, M., Armiger, R.S., Kutzer, M.D., Basafa, E., Kazanzides, P., Taylor, R.H.: Intraoperative Image-based multiview 2D/3D registration for image-guided orthopaedic surgery: incorporation of fiducial-based C-arm tracking and GPU-acceleration. IEEE Trans. Med. Imaging 31(4), 948–962 (2012)
Ikeda, K., Ino, F., Hagihara, K.: Efficient acceleration of mutual information computation for nonrigid registration using CUDA. IEEE J. Biomed. Health Inform. 18(3), 956–968 (2014)
Passerone, C., Sansoe, C., Maggiora, R., Avolio, C., Zavagli, M., Minati, F., Costantini, M.: Highly parallel image co-registration techniques using GPUs. In: Aerospace Conference, IEEE, pp. 1–12 (2014)
Gruslys, A., Acosta-Cabronero, J., Nestor, P.J., Williams, G.B., Ansorge, R.E.: A new fast accurate nonlinear medical image registration program including surface preserving regularization. IEEE Trans. Med. Imaging 33(11), 2118–2127 (2014)
Choy, C.B., Stark, M., Corbett-Davies, S., Savarese, S.: Enriching object detection with 2D-3D registration and continuous viewpoint estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2512–2520 (2015)
Valero-Lara, P.: Multi-GPU acceleration of DARTEL (early detection of Alzheimer). In: IEEE International Conference onCluster Computing (CLUSTER), pp. 346–354 (2014)
Ibragimov, B., et al.: Shape representation for efficient landmark-based segmentation in 3-D. IEEE Trans. Med. Imaging 33(4), 861–874 (2014)
Allusse, Y., Horain, P., Agarwal, A., Saipriyadarshan, C.: GpuCV: an opensource GPU-accelerated framework for image processing and computer vision. In: Proceedings of ACM International Conference, Multimedia, pp. 1089–1092 (2008)
Babenko, P., Shah, M.: MinGPU: a minimum GPU library for computer vision. Real Time Image Process. 3(4), 255–268 (2008)
Fung, J., Mann, S., Aimone, C.: OpenVIDIA: parallel GPU computer vision. In: Proceedings of ACM International Conference, Multimedia, pp. 849–852 (2005)
Yousef, A.H., Abd El Munim, H.E.: An accelerated shape based segmentation approach adopting the pattern search optimizer. Ain Shams Eng. J. (2016). doi:10.1016/j.asej.2016.11.002
Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors, NVIDIA. Morgan Kaufmann, San Francisco (2010)
https://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v05.pdf
http://www.geforce.com/hardware/notebook-gpus/geforce-gt-720m/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gt-610/specifications
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yousef, A.H., Abd El Munim, H.E. A GPU-based elastic shape registration approach in implicit spaces. J Real-Time Image Proc 16, 2059–2071 (2019). https://doi.org/10.1007/s11554-017-0710-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-017-0710-7