Skip to main content
Log in

A fast image dehazing method that does not introduce color artifacts

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

We propose a method for color dehazing with four main characteristics: it does not introduce color artifacts, it does not depend on inverting any physical equation, it is based on models of visual perception, and it is fast, potentially real time. Our method converts the original input image to the HSV color space and works in the saturation and value domains by: (1) reducing the value component via a global constrained histogram flattening; (2) modifying the saturation component in consistency with the previous reduced value; and (3) performing a local contrast enhancement in the value component. Results show that our method competes with the state-of-the-art when dealing with standard hazy images, and outperforms it when dealing with challenging haze cases. Furthermore, our method is able to dehaze a FullHD image on a GPU in 90 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ancuti, C., Ancuti, C.: Single image dehazing by multi-scale fusion. IEEE Trans. Image Process. 22(8), 3271–3282 (2013)

    Article  Google Scholar 

  2. Ancuti, C.O., Ancuti, C., Hermans, C., Bekaert, P.: A fast semi-inverse approach to detect and remove the haze from a single image. In: No. 6493 in Asian Conference on Computer Vision, ACCV-2010, pp. 501–514 (2010)

  3. Ancuti, C., Ancuti, C.O., De Vleeschouwer, C.: D-hazy: A dataset to evaluate quantitatively dehazing algorithms. In: IEEE International Conference on Image Processing (ICIP), ICIP’16 (2016)

  4. Bai, L., Wu, Y., Xie, J., Wen, P.: Real time image haze removal on multi-core dsp. Procedia Eng. 99, 244–252 (2015). https://doi.org/10.1016/j.proeng.2014.12.532. (2014 Asia-Pacific International Symposium on Aerospace Technology, APISAT2014 September 24–26, 2014 Shanghai, China)

    Article  Google Scholar 

  5. Berman, D., Treibitz, T., Avidan, S.: Non-local image dehazing. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

  6. Brainard, D.H.: The psychophysics toolbox. Sp. Vis. 10, 433–436 (1997)

    Article  Google Scholar 

  7. Brenner, N., Bialek, W., de Ruyter van Steveninck, R.: Adaptive rescaling maximizes information transmission. Neuron 26(3), 695–702 (2000). https://doi.org/10.1016/S0896-6273(00)81205-2

    Article  Google Scholar 

  8. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal (2016). arXiv:1601.07661

  9. Carandini, M., Heeger, D.J.: Normalization as a canonical neural computation. Nat. Rev. Neurosci. 1, 51–62 (2011). https://doi.org/10.1038/nrn3136

    Article  Google Scholar 

  10. Chen, C., Do, M.N., Wang, J.: Robust image and video dehazing with visual artifact suppression via gradient residual minimization. In: Computer vision—ECCV 2016—14th European Conference, pp. 576–591 (2016). https://doi.org/10.1007/978-3-319-46475-6_36

  11. Choi, L.K., You, J., Bovik, A.C.: Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans. Image Process. 24(11), 3888–3901 (2015)

    Article  MathSciNet  Google Scholar 

  12. Cyriac, P., Kane, D., Bertalmío, M.: Perceptual dynamic range for in-camera image processing. In: British Machine Vision Conference (BMVC) (2015)

  13. El-Hashash, M.M., Aly, H.A.: High-speed video haze removal algorithm for embedded systems. J. Real Time Image Process. (2016). https://doi.org/10.1007/s11554-016-0603-1

    Article  Google Scholar 

  14. Fattal, R.: Single Image Dehazing. In: ACM SIGGRAPH 2008 Papers, SIGGRAPH ’08, pp. 72:1–72:9. ACM, New York, NY, USA (2008)

  15. Fattal, R.: Dehazing using Color-Lines. In: ACM Transaction on Graphics. ACM, New York, NY, USA (2014)

  16. Galdran, A., Vazquez-Corral, J., Pardo, D., Bertalmío, M.: Enhanced variational image dehazing. SIAM J. Imaging Sci. 8(3), 1519–1546 (2015)

    Article  MathSciNet  Google Scholar 

  17. Galdran, A., Vazquez-Corral, J., Pardo, D., Bertalmío, M.: Fusion-based Variational Image Dehazing. IEEE Signal Process. Lett. 24(2), 151–155 (2017)

    MATH  Google Scholar 

  18. Galdran, A., Alvarez-Gila, A., Bria, A., Vazquez-Corral, J., Bertalmío, M.: On the duality between Retinex and Image Dehazing. In: Computer Vision and Pattern Recognition (CVPR) (2018)

  19. Gao, Y., Hu, H.M., Wang, S., Li, B.: A fast image dehazing algorithm based on negative correction. Signal Process. 103, 380–398 (2014)

    Article  Google Scholar 

  20. Hautière, N., Tarel, J.P., Aubert, D., Dumont, E.: Blind contrast enhancement assesment by gradient rationing at visible edges. Image Anal. Stereol. 27(2), 87–95 (2011)

    Article  Google Scholar 

  21. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  22. Kastner, D.B., Baccus, S.A.: Insights from the retina into the diverse and general computations of adaptation, detection, and prediction. Curr. Opin. Neurobiol. 25, 6369 (2014). https://doi.org/10.1016/j.conb.2013.11.012.

    Article  Google Scholar 

  23. Kopf, J., Neubert, B., Chen, B., Cohen, M., Cohen-Or, D., Deussen, O., Uyttendaele, M., Lischinski, D.: Deep photo: model-based photograph enhancement and viewing. In: ACM SIGGRAPH Asia 2008 Papers, pp. 116:1–116:10. ACM, New York, NY, USA (2008)

  24. Koschmieder, H.: Theorie der horizontalen Sichtweite: Kontrast und Sichtweite. Keim & Nemnich, Frankfurt (1925)

    Google Scholar 

  25. Lai, Y.H., Chen, Y.L., Chiou, C.J., Hsu, C.T.: Single-image dehazing via optimal transmission map under scene priors. IEEE Trans. Circ. Syst. Video Technol. 25(1), 1–14 (2015)

    Article  Google Scholar 

  26. Li, Y., Guo, F., Tan, R.T., Brown, M.S.: A contrast enhancement framework with jpeg artifacts suppression. In: ECCV 2014: 13th European Conference, pp. 174–188 (2014). https://doi.org/10.1007/978-3-319-10605-2_12

  27. Li, Y., You, S., Brown, M.S., Tan, R.T.: Haze visibility enhancement: a survey and quantitative benchmarking. Comput. Vis. Image Underst. 165, 1–16 (2017). https://doi.org/10.1016/j.cviu.2017.09.003

    Article  Google Scholar 

  28. Li, Z., Zheng, J.: Edge-preserving decomposition-based single image haze removal. IEEE Trans. Image Process. 24(12), 5432–5441 (2015)

    Article  MathSciNet  Google Scholar 

  29. Lissner, I., Preiss, J., Urban, P., Lichtenauer, M.S., Zolliker, P.: Image-difference prediction: from grayscale to color. IEEE Trans. Image Process. 22(2), 435–446 (2013). https://doi.org/10.1109/TIP.2012.2216279

    Article  MathSciNet  MATH  Google Scholar 

  30. Luan, Z., Shang, Y., Zhou, Z., Shao, Z., Guo, G., Liu, X.: Fast single image dehazing based on a regression model. Neurocomputing 245, 10–22 (2017)

    Article  Google Scholar 

  31. Ma, K., Liu, W., Wang, Z.: Perceptual evaluation of single image dehazing algorithms. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3600–3604 (2015). https://doi.org/10.1109/ICIP.2015.7351475

  32. Matlin, E., Milanfar, P.: Removal of haze and noise from a single image. In: Proc. SPIE 8296, Computational Imaging X, vol. 8296, pp. 82,960T–82,960T–12 (2012). https://doi.org/10.1117/12.906773

  33. Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient Image Dehazing with Boundary Constraint and Contextual Regularization. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 617–624 (2013)

  34. Mittal, A., Soundarajan, R., Bovik, A.C.: Making a completely blind image quality analyzer. IEEE Signal Process. Lett. 22(3), 209–212 (2013)

    Article  Google Scholar 

  35. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  36. Mizokami, Y., Takahashi, Y., Yaguchi, H.: Colorfulness perception of natural images adjusting to haze. In: The 23rd Symposium of the International Colour Vision Society (2015)

  37. Mizokami, Y., Takahashi, Y., Yaguchi, H.: Stable colorfulness perception of scene through haze. In: Vision Sciences Society (VSS) (2016)

  38. Narasimhan, S., Nayar, S.: Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003)

    Article  Google Scholar 

  39. Nishino, K., Kratz, L., Lombardi, S.: Bayesian defogging. Int. J. Comput. Vis. 98(3), 263–278 (2012)

    Article  MathSciNet  Google Scholar 

  40. Oakley, J., Bu, H.: Correction of simple contrast loss in color images. IEEE Trans. Image Process. 16(2), 511–522 (2007)

    Article  MathSciNet  Google Scholar 

  41. Olshausen, B.A., Field, D.J.: Vision and the coding of natural images. Am. Sci. 88(3), 238–245 (2000)

    Article  Google Scholar 

  42. Pelli, D.G.: The videotoolbox software for visual psychophysics: transforming numbers into movies. Sp. Vis. 10(4), 437–442 (1997)

    Article  Google Scholar 

  43. Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., Romeny, B.T.H., Zimmerman, J.B.: Adaptive histogram equalization and its variations. Comput. Vision Graph. Image Process. 39(3), 355–368 (1987). https://doi.org/10.1016/S0734-189X(87)80186-X

    Article  Google Scholar 

  44. Schaul, L., Fredembach, C., Susstrunk, S.: Color image dehazing using the near-infrared. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 1629–1632 (2009)

  45. Schechner, Y., Narasimhan, S., Nayar, S.: Instant dehazing of images using polarization. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I–325–I–332 vol. 1 (2001)

  46. Sun, W.: A new single-image fog removal algorithm based on physical model. Optik Int. J. Light Electron Opt. 124(21), 4770–4775 (2013)

    Article  Google Scholar 

  47. Tan, R.: Visibility in bad weather from a single image. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8 (2008)

  48. Tang, K., Yang, J., Wang, J.: Investigating Haze-Relevant Features in a Learning Framework for Image Dehazing. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2995–3002 (2014)

  49. Tang, K., Yang, J., Wang, J.: Investigating haze-relevant features in a learning framework for image dehazing. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2995–3002 (2014). https://doi.org/10.1109/CVPR.2014.383

  50. Tarel, J.P., Hautiere, N.: Fast visibility restoration from a single color or gray level image. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2201–2208 (2009)

  51. Tarel, J.P., Hautiere, N., Caraffa, L., Cord, A., Halmaoui, H., Gruyer, D.: Vision enhancement in homogeneous and heterogeneous fog. IEEE Intell. Transp. Syst. Mag. 4(2), 6–20 (2012)

    Article  Google Scholar 

  52. Tarel, J.P., Hautiere, N., Cord, A., Gruyer, D., Halmaoui, H.: Improved visibility of road scene images under heterogeneous fog. In: 2010 IEEE Intelligent Vehicles Symposium (IV), pp. 478–485 (2010)

  53. Vazquez-Corral, J., Zamir, S., Galdran, A., Pardo, D., Bertalmío, M.: Image processing applications through a variational perceptually-based color correction related to retinex. In: IS&T Electronic Imaging Conference (2016)

  54. Wan, Y., Chen, Q.: Joint image dehazing and contrast enhancement using the hsv color space. IEEE International Conference on Visual Communications and Image Processing (2015)

  55. Wang, J.B., He, N., Zhang, L.L., Lu, K.: Single image dehazing with a physical model and dark channel prior. Neurocomputing 149(Part B), 718–728 (2015)

    Article  Google Scholar 

  56. Wang, S., Cho, W., Jang, J., Abidi, M.A., Paik, J.: Contrast-dependent saturation adjustment for outdoor image enhancement. J. Opt. Soc. Am. A 34(1), 7–17 (2017). https://doi.org/10.1364/JOSAA.34.000007

    Article  Google Scholar 

  57. Wang, W., Yuan, X.: Recent advances in image dehazing. IEEE/CAA J. Autom. Sin. 4(3), 410–436 (2017)

    Article  MathSciNet  Google Scholar 

  58. Wang, W., Yuan, X., Wu, X., Liu, Y.: Dehazing images with a large sky region. Neurocomputing 238, 365–376 (2017)

    Article  Google Scholar 

  59. Wang, W., Yuan, X., Wu, X., Liu, Y.: Fast Image dehazing method based on linear transformation. IEEE Trans. Multimed. 19(6), 1142–1155 (2017)

    Article  Google Scholar 

  60. Wang, Y., Wang, H., Yin, C., Dai, M.: Biologically inspired image enhancement based on Retinex. Neurocomputing 177, 373–384 (2016)

    Article  Google Scholar 

  61. Yoon, I., Kim, S., Kim, D., Hayes, M.H., Paik, J.K.: Adaptive defogging with color correction in the hsv color space for consumer surveillance system. IEEE Trans. Consum. Electron. 58(1), 111–116 (2012)

    Article  Google Scholar 

  62. Zhang, X.S., Gao, S.B., Li, C.Y., Li, Y.J.: A retina inspired model for enhancing visibility of hazy images. Front. Comput. Neurosci. 9, 151 (2015)

    Google Scholar 

  63. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 761544 (project HDR4EU) and under grant agreement number 780470 (project SAUCE), and by the Spanish government and FEDER Fund, grant ref. TIN2015-71537-P (MINECO/FEDER,UE). JVC was supported by the Spanish government, grant ref. IJCI-2014-19516. The NVIDIA Titan X used for this research was donated by the NVIDIA corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Vazquez-Corral.

Appendix: sRGB/HSV color conversions

Appendix: sRGB/HSV color conversions

1.1 From sRGB to HSV

Given a pixel (RGB) in sRGB space, we start by defining \(M={\text {max}}(R,G,B)\) and \(m={\text {min}}(R,G,B)\). Let us also define an auxiliary variable \(H'\) in the following way

$$\begin{aligned} H' = {\left\{ \begin{array}{ll} 0 &{} \quad \text {if } M-n=0.\\ \frac{G-B}{M-m} \mod 6 &{} \quad \text {if } M=R.\\ \frac{B-R}{M-m}+2 &{} \quad \text {if } M=G.\\ \frac{R-G}{M-m}+4 &{} \quad \text {if } M=B.\\ \end{array}\right. } \end{aligned}$$
(9)

Then, the HSV coordinates are defined as

$$H = H'\times 360.$$
(10)
$$S = \frac{M-m}{M}.$$
(11)
$$V=M.$$
(12)

1.2 From HSV to sRGB

Given a pixel (HSV) in the HSV space we start by defining \(C=S\times V\), \(H'=\frac{H}{60}\), \(X=C\times (1- \Vert H' \mod 2 -1\Vert )\), and \(m=V-C\). Then the pixel value in sRGB color space is defined as

$$\begin{aligned} (R,G,B) = {\left\{ \begin{array}{ll} (m,m,m) &{} \quad \text {if } C=0.\\ (C+m,X+m,m) &{} \quad \text {if } 0\le H' \le 1.\\ (X+m,C+m,m) &{} \quad \text {if } 1\le H' \le 2.\\ (m,C+m,X+m) &{} \quad \text {if } 2\le H' \le 3.\\ (m,X+m,C+m) &{} \quad \text {if } 3\le H' \le 4.\\ (X+m,m,C+m) &{} \quad \text {if } 4\le H' \le 5.\\ (C+m,m,X+m) &{} \quad \text {if } 5\le H' \le 6.\\ \end{array}\right. } \end{aligned}$$
(13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazquez-Corral, J., Galdran, A., Cyriac, P. et al. A fast image dehazing method that does not introduce color artifacts. J Real-Time Image Proc 17, 607–622 (2020). https://doi.org/10.1007/s11554-018-0816-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-018-0816-6

Keywords

Navigation