Abstract
A novel image approximation framework called steered mixture-of-experts (SMoE) was recently presented. SMoE has multiple applications in coding, scale-conversion, and general processing of image modalities. In particular, it has strong potential for coding and streaming higher dimensional image modalities that are necessary to leverage full translational and rotational freedom (6 degrees-of-freedom) in virtual reality for camera captured images. In this paper, we analyze the rendering performance of SMoE for 2D images and 4D light fields. Two different GPU implementations that parallelize the SMoE regression step at pixel-level are presented, including experimental evaluations based on rendering performance and quality. In this paper it is shown that on appropriate hardware, an OpenCL implementation can achieve 85 fps and 22 fps for, respectively, 1080p and 4K renderings of large models with more than 100,000 of Gaussian kernels.












Similar content being viewed by others
References
Ihrke, I., Restrepo, J., Mignard-Debise, L.: Principles of light field imaging: briefly revisiting 25 years of research. IEEE Signal Process. Mag. 33(5), 59–69 (2016). https://doi.org/10.1109/MSP.2016.2582220
Adelson, E.H., Bergen, J.R.: The plenoptic function and the elements of early vision. In: Landy, M.S., Movshon, J.A. (eds.) Computational Models of Visual Processing, pp. 3–20. The MIT Press, Cambridge, MA, USA (1991)
Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques-SIGGRAPH ’96, pp. 31–42. ACM Press, New York (1996). https://doi.org/10.1145/237170.237199
Wu, G., Masia, B., Jarabo, A., Zhang, Y., Wang, L., Dai, Q., Chai, T., Liu, Y.: Light field image processing: an overview. IEEE J. Sel. Top. Signal Process. 11(7), 926–954 (2017). https://doi.org/10.1109/JSTSP.2017.2747126
Verhack, R., Sikora, T., Lange, L., Van Wallendael, G., Lambert, P.: A universal image coding approach using sparse mixture-of-experts regression. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 2142–2146. USA, Phoenix, AZ (2016). https://doi.org/10.1109/ICIP.2016.7532737
Lange, L., Verhack, R., Sikora, T.: Video representation and coding using a sparse steered mixture-of-experts network. In: Picture Coding Symposium (PCS), pp. 1–5, Nuremberg, Germany (2016). https://doi.org/10.1109/PCS.2016.7906369
Verhack, R., Sikora, T., Lange, L., Jongebloed, R., Van Wallendael, G., Lambert, P.: Steered mixture-of-experts for light field coding, depth estimation, and processing. In: Proceedings of the IEEE Conference on Multimedia and Expo (ICME), pp. 1183–1188, Hong Kong, China (2017). https://doi.org/10.1109/ICME.2017.8019442
Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012). https://doi.org/10.1109/TCSVT.2012.2221191
Domanski, M., Stankiewicz, O., Wegner, K., Grajek, T.: Immersive visual media MPEG-I: 360 video, virtual navigation and beyond. In: 2017 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 1–9. IEEE, New York (2017). https://doi.org/10.1109/IWSSIP.2017.7965623
Hinds, A.T., Doyen, D., Carballeira, P.: Toward the realization of six degrees-of-freedom with compressed light fields. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), pp. 1171–1176. IEEE, New York (2017). https://doi.org/10.1109/ICME.2017.8019543
Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for heterogeneous computing systems. Comput. Sci. Eng. 12(3), 66–73 (2010). https://doi.org/10.1109/MCSE.2010.69
Goossens, B., De Vylder, J., Philips, W.: Quasar—a new heterogeneous programming framework for image and video processing algorithms on CPU and GPU. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 2183–2185, Paris, France (2014). https://doi.org/10.1109/ICIP.2014.7025441
Goossens, B.: Dataflow management, dynamic load balancing and concurrent processing for real-time embedded vision applications using quasar. Int. J. Circuit Theory Appl. 46(9), 1733–1755 (2018). https://doi.org/10.1002/cta.2494
MATLAB: Version 8.6.0 (R2015b). The MathWorks Inc., Natick (2015)
Smola, A., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)
Broomhead, D.S., Lowe, D.: Radial basis functions, multi-variable functional interpolation and adaptive networks. Technical report, DTIC Document (1988)
Altinigneli, M.C., Plant, C., Böhm, C.: Massively parallel expectation maximization using graphics processing units. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 838–846, ACM, New York (2013)
Moon, T.: The expectation–maximization algorithm. IEEE Signal Process. Mag. 13(6), 47–60 (1996). https://doi.org/10.1109/79.543975
Kumar, N.S.L.P., Satoor, S., Buck, I.: Fast parallel expectation maximization for Gaussian mixture models on GPUs using CUDA. In: 2009 11th IEEE International Conference on High Performance Computing and Communications, pp. 103–109. IEEE, New York (2009). https://doi.org/10.1109/HPCC.2009.45. http://ieeexplore.ieee.org/document/5166982/
Verhack, R., Sikora, T., Lange, L., Van Wallendael, G., Lambert, P.: Steered mixture-of-experts for 4-D light field approximation, coding, and description. IEEE Trans. Multimedia (2018) (submitted)
Yuksel, S.E., Wilson, J.N., Gader, P.D.: Twenty years of mixture of experts. IEEE Trans Neural Netw. Learn. Syst. 23(8), 1177–1193 (2012). https://doi.org/10.1109/TNNLS.2012.2200299
Viola, I., Rerabek, M., Bruylants, T., Schelkens, P., Pereira, F., Ebrahimi, T.: Objective and subjective evaluation of light field image compression algorithms. In: 32nd Picture Coding Symposium (PCS), pp. 1–5, Nuremberg, Germany (2016)
Rerabek, M., Ebrahimi, T.: New light field image dataset. In: 8th International Conference on Quality of Multimedia Experience (QoMEX). EPFL-CONF-218363, Lisbon, Portugal (2016). http://mmspg.epfl.ch/EPFL-light-field-image-dataset
Tok, M., Jongebloed, R., Lange, L., Bochinski, E., Sikora, T.: An MSE approach for training and coding steered mixtures of experts. In: Picture Coding Symposium (PCS), pp. 273–277, San Francisco, CA, USA (2018). https://doi.org/10.1109/PCS.2018.8456250
Bochinski, E., Jongebloed, R., Tok, M., Sikora, T.: Regularized gradient descent training of steered mixture of experts for sparse image representation. In: Accepted for Publication in IEEE International Conference on Image Processing (ICIP ’18), Athens, Greece (2018)
Sung, H.: Gaussian Mixture Regression and Classification. Ph.D. thesis, Rice University (2004)
Bugmann, G.: Normalized Gaussian radial basis function networks. Neurocomputing 20(1–3), 97–110 (1998). https://doi.org/10.1016/S0925-2312(98)00027-7
Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)
Guennebaud, G., Jacob, B., et al.: Eigen v3. (2010). http://eigen.tuxfamily.org. Accessed 14 Dec 2018
Wilt, N.: The CUDA Handbook: A Comprehensive Guide to GPU Programming, 2nd edn. Addison Wesley, Boston (2018)
Khronos OpenCL Working Group: The OpenCL Specification. Version 2.0. Revision 29. Technical report (2015)
NVIDIA Corporation: CUDA occupancy calculator (2015). https://developer.nvidia.com/. Accessed 14 Dec 2018
Volkov, V.: Better performance at lower occupancy. In: Proceedings of the GPU Technology Conference, GTC, vol. 10 (2010)
Goossens, B.: Quasar—optimization guide (2017). https://quasar.ugent.be/files/doc/OptimizationGuide.html. Accessed 14 Dec 2018
Vinkler, M., Havran, V.: Register efficient dynamic memory allocator for GPUs. Comput. Graph. Forum 34, 143–154 (2015)
Altera, S.: For OpenCL Best Practices Guide. Programming Reference, Altera, May 2015 (2014)
Takizawa, H., Hirasawa, S., Sugawara, M., Gelado, I., Kobayashi, H., Hwu, W.M.W.: Optimized data transfers based on the OpenCL event management mechanism. Sci. Program. 2015, 2 (2015). https://doi.org/10.1155/2015/576498
Richter, T., Pinheiro, A., Schelkens, P., Skodras, A., Ebrahimi, T.: Image compression grand challenge at ICIP 2016. Technical report (2016)
Funding
The research activities described in this paper were funded by IDLab (Ghent University-imec), Flanders Innovation and Entrepreneurship (VLAIO), the Fund for Scientific Research Flanders (FWO Flanders), and the European Union.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Avramelos, V., Verhack, R., Saenen, I. et al. Highly parallel steered mixture-of-experts rendering at pixel-level for image and light field data. J Real-Time Image Proc 17, 931–947 (2020). https://doi.org/10.1007/s11554-018-0843-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-018-0843-3