Abstract
We proposed a new method to compute the discrete image moments in this paper. By simple mathematical deduction, the discrete image moments can be transformed into first-order moments. Therefore, the fast algorithm for first-order moments’ calculation can be used to compute discrete image moments. We also design an efficient computation structure based on systolic array to implement this approach. Since our method does not use the moment kernel polynomials’ properties in the calculation process, the proposed method can be used to compute any discrete image moments in the same way. The presented algorithm has several advantages such as regular and simple computation structure, without multiplication, independent of the image’s intensity distribution, applicable to any discrete moment family. Various experiments demonstrate the effectiveness of the proposed algorithm in comparison with some state-of-the-art methods.











Similar content being viewed by others
References
Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inform. Theory. 8(2), 179–187 (1962)
Shu, H.Z., Zhou, J., Han, G.N., Luo, L.M., Coatrieux, J.L.: Image reconstruction from limited range projections using orthogonal moments. Pattern Recognit. 40(2), 670–680 (2007)
Dai, X.B., Shu, H.Z., Luo, L.M., Han, G.N., Coatrieux, J.L.: Reconstruction of tomographic images from limited range projections using discrete Radon transform and Tchebichef moments. Pattern Recognit. 43(3), 1152–1164 (2010)
Khalid, M.H., George A.P.: In: The proceedings of the IEEE 18th international conference of digital signal processing. Accurate reconstruction of noisy medical images using orthogonal moments. July 1–3, 2013, Greece
Hosny, Khalid M., Darwish, Mohamed M.: Invariant image watermarking using accurate polar harmonic transforms. Comput. Electr. Eng. 62, 429–447 (2017)
Hosny, Khalid M.: A new set of Gegenbauer moment invariants for pattern recognition application. Arab. J. Sci. Eng. 39, 7097–7107 (2014)
Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Pattern Recognit. 26(1), 167–174 (1993)
Ke, L., Qian, W., Jian, X., Weiguo, P.: 3D model retrieval and classification by semi-supervised learning with content-based similarity. Inf. Sci. 281, 703–713 (2014)
Zhang, H., Shu, H., Han, G., Coatrieux, G., Luo, L., Coatrieux, J.: Blurred image recognition by Legendre moment invariants. IEEE Trans. Image Process. 19(3), 596–611 (2010)
Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980)
Xin, Y., Pawlak, M., Liao, S.: Accurate computation of Zernike moments in polar coordinates. IEEE Trans. Image Process. 16(2), 581–587 (2007)
Lin, H., Si, J.: Orthogonal rotation-invariant moments for digital image processing. IEEE Trans. Image Process. 17(3), 272–282 (2008)
Yap, P.T., Paramesran, R., Ong, S.H.: Image analysis by Krawtchouk moments. IEEE Trans. Image Process. 12(11), 1367–1377 (2003)
Yap, P.T., Paramesran, R., Ong, S.H.: Image analysis using Hahn moments. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 2057–2062 (2007)
Zhu, H., Shu, H., Liang, J., Luo, L., Coatrieux, J.L.: Image analysis by discrete orthogonal Racah moments. Signal Process. 87, 687–708 (2007)
Zhu, H., Shu, H., Zhou, J., Luo, L., Coatrieux, J.L.: Image analysis by discrete orthogonal dual Hahn moments. Pattern Recognit. Lett. 28(13), 1688–1704 (2007)
Zhu, H., Shu, H., Xia, T., Luo, L., Coatrieux, J.L.: Translation and scale invariants of Tchebichef moments. Pattern Recognit. 40(9), 2530–2542 (2007)
Fu, B., Zhoua, J., Lia, Y., Zhang, G., Wang, C.: Image analysis by modified Legendre moments. Pattern Recognit. 40(2), 691–704 (2007)
Lim, C., Honarvar, B., Thung, K.H., Paramesran, R.: Fast computation of exact Zernike moments using cascaded digital filters. Inf. Sci. 181(17), 3638–3651 (2011)
Papakostas, G.A., Koulouriotis, D.E., Karakasis, E.G.: Computation strategies of orthogonal image moments: A comparative study. Appl. Math. Comput. 216, 1–17 (2010)
Wang, G.B., Wang, S.G.: Recursive computation of Tchebichef moment and its inverse transform. Pattern Recognit. 39(1), 47–56 (2006)
Papakostas, G.A., Karakasis, E.G., Koulouriotis, D.E.: Efficient and accurate computation of geometric moments on gray-scale images. Pattern Recognit. 41(6), 1895–1904 (2008)
Papakostas, G.A., Koulouriotis, D.E., Karakasis, E.G.: A unified methodology for the efficient computation of discrete orthogonal image moments. Inf. Sci. 179, 3619–3633 (2009)
Shu, H., Zhang, H., Chen, B., Haigron, P., Luo, L.: Fast computation of Tchebichef moments for binary and grayscale images. IEEE Trans. Image Process. 19(12), 3171–3180 (2010)
Asli, B.H.S., Paramesran, R., Lim, C.-L.: The fast recursive computation of Tchebichef moment and its inverse transform based on Z-transform. Digital Signal Process. 23(5), 1738–1746 (2013)
Asli, B.H.S., Flusser, J.: Fast computation of Krawtchouk moments. Inf. Sci. 288, 73–86 (2014)
Jahid, T., Hmimid, A., Karmouni, H., Sayyouri, M., Qjidaa, H., Rezzouk, A.: Image analysis by Meixner moments and a digital filter. Multimed Tools Appl. 77, 19811–19831 (2018)
Karmouni, H., Hmimid, A., Jahid, T., Sayyouri, M., Qjidaa, H., Rezzouk, A.: Fast and stable computation of the Charlier moments and their inverses using digital filters and image block representation. Circuits Syst. Signal Process. 37, 4015–4033 (2018)
Chan, F.H.Y., Lam, F.K., Li, H.F., Liu, J.G.: An all adder systolic structure for fast computation of moments. J. VLSI Signal Process. 12(2), 159–175 (1996)
Hua, X., Liu, J.: A novel fast algorithm for the pseudo Winger–Ville distribution. J Commun. Technol. Electron. 60(11), 1238–1247 (2015)
Liu, J.G., Pan, C., Liu, Z.B.: Novel convolutions using first-order moments. IEEE Trans. Comput. 61(7), 1050–1056 (2012)
Marimuthu, C.N., Thangaraj, P., Ramesan, A.: Low power shift and add multiplier design. Int. J. Comput. Sci. Inf. Technol. 2, 12–22 (2010)
Hosny, K.M.: Fast computation of accurate Zernike moments. J. Real-Time Image Process. 3(1–2), 97–107 (2008)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Nos. 61433007, 61801337, 61671337, 61701353) and Hubei Education Department Science And Technology Research Project (No. Q20171510).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Hua, X., Hong, H., Liu, J. et al. A novel unified method for the fast computation of discrete image moments on grayscale images. J Real-Time Image Proc 17, 1239–1253 (2020). https://doi.org/10.1007/s11554-019-00878-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-019-00878-7