Skip to main content
Log in

Low-complexity open-loop coding of IDR infrared images having JPEG compatibility

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

In this paper, we present a low-complexity open-loop Intermediate Dynamic Range (IDR) infrared image coding algorithm which provides two scalability layers. The first layer corresponds to a low dynamic range (LDR) version of the image which can be obtained by a JPEG decoder, while the second layer corresponds to the original IDR image. To achieve bit-depth scalability, we separate an input IDR image into LDR and residual images by simple operations, so that the residual image has a bit depth not higher than 8 bits per pixel, i.e., it can be compressed by JPEG baseline or other coding algorithm, developed for 8-bit depth formats. For real-time applications, we introduce a predefined look-up table containing quality factors for both the LDR and the residual images, so that increase of the table index corresponds to reduction of bit rate and increase of distortion close to an operational rate-distortion curve. Experimental results show that the proposed algorithm is significantly less complex than JPEG-XT Profile C, part 6, and provides better coding performance than its reference software with default tone mapping operator for the vast majority of the infrared test images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. In this paper, we use ”\(\leftarrow\)” as the assignment operation, ”\(\ll\)” and ”\(\gg\)” as left and right logical shift.

  2. A particular case of this approach (without downsampling) was introduced by the authors in [30].

  3. Drone Systems ApS, http://dronesystems.dk/.

References

  1. Friman, O., et al.: Methods for large-scale monitoring of district heating systems using airborne thermography. IEEE Trans. Geosci. Remote Sens. 52(8), 5175–5182 (2014)

    Article  Google Scholar 

  2. Xu, Y., Wang, X., et al.: Thermal anomaly detection based on saliency computation for district heating system. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2016)

  3. Belyaev, E., Forchhammer, S.: Drone HDR infrared video coding viaAerial map prediction. In: IEEE International Conference on ImageProcessing (ICIP) (2018)

  4. Jose, A., Berni, J., et al.: Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 47(3), 722–738 (2009)

    Article  Google Scholar 

  5. Millikan, B., Dutta, A., et al.: Fast detection of compressively sensed IR targets using stochastically trained least squares and compressed quadratic correlation filters. IEEE Trans. Aerosp. Electron. Syst. 53(5), 2449 (2017)

    Article  Google Scholar 

  6. Hu, Hai-Miao, Wu, Jiawei, et al.: An adaptive fusion algorithm for visible and infrared videos based on entropy and the cumulative distribution of gray levels. IEEE Trans. Multimed. 19(12), 2706–2719 (2017)

    Article  Google Scholar 

  7. Akil, M., Grandpierre, T., Perroton, L.: Real-time dynamic tone-mapping operator on GPU. J. Real Time Image Process. 7(3), 165–172 (2012)

    Article  Google Scholar 

  8. Liu, J., Hassan, F., Carletta, J.E.: A study of hardware-friendly methods for gradient domain tone mapping of high dynamic range images. J. Real Time Image Process. 12(1), 165–181 (2016)

    Article  Google Scholar 

  9. ITU-T and ISO/IEC JTC 1: JPEG 2000 image coding system: core coding system, ITU-T recommendation T. 800 and ISO/IEC 15444-1. JPEG 2000 Part 1, (2000)

  10. Mai, Zicong, Mansour, H., et al.: Visually favorable tone-mapping with high compression performance in bit-depth scalable video coding. IEEE Trans. Multimed. 15(7), 1503–1518 (2013)

    Article  Google Scholar 

  11. Le Pendu, M., Guillemot, C., Thoreau, D.: Local inverse tone curve learning for high dynamic range image scalable compression. IEEE Trans. Image Process. 24(12), 5753–5763 (2015)

    Article  MathSciNet  Google Scholar 

  12. High Efficiency Video Coding, document ITU-T Rec. H.265 and ISO/IEC 23008-2, Oct. 2014 . ISO/IEC 18477. Scalable compression and coding of continuous-tone still images (JPEG-XT). JTC 1 / SC 29 / WG 1, (2016)

  13. Artusi, A., Mantiuk, R.K., Richter, T., et al.: Overview and evaluation of the JPEG XT HDR image compression standard. J. Real Time Image Process. 16(2), 413–428 (2015)

    Article  Google Scholar 

  14. Richter, T.: On the standardization of the JPEG XT image compression. In: 2013 Picture Coding Symposium (PCS) (2013)

  15. Richter, T.: Error bounds for HDR image coding with JPEG XT. In: 2017 Data Compression Conference (DCC) (2017)

  16. Ward, G., Simmons, M.: JPEG-HDR: a backwards-compatible, high dynamic range extension to JPEG. In: Proceedings of the Thirteenth Color Imaging Conference (2005)

  17. Wang, Z., Simon, S., et al.: Visually lossless image compression extension for JPEG based on just-noticeable distortion evaluation. In: 2015 International Conference on Systems, Signals and Image Processing (IWSSIP) (2015)

  18. Choi, S., Kwon, O., et al.: Performance evaluation of JPEG XT standard for high dynamic range image coding. In: Proceedings of the World Congress on Engineering (2015)

  19. Pinheiro, A., Fliegel, K., et al.: Performance evaluation of the emerging JPEG XT image compression standard. In: Proceedings of the 16th International Workshop on Multimedia Signal Processing (2014)

  20. JPEG-XT reference software, [Online] https://jpeg.org/jpegxt/software.html. Accessed 12 Aug 2019

  21. Shen, M., Xue, P., Wang, C.: Down-sampling based video coding using super-resolution technique. IEEE Trans. Circuits Syst. Video Technol. 21(6), 755 (2011)

    Article  Google Scholar 

  22. Reinhard, E., Devlin, K.: Dynamic range reduction inspired by photoreceptor physiology. IEEE Trans. Vis. Comput. Gr. 11(1), 13–24 (2004)

    Article  Google Scholar 

  23. Dufaux, F., le Callet, P., Mantiuk, R., Mrak, M.: High Dynamic Range Video: From Acquisition, to Display and Applications. Academic Press, Cambridge, MA (2016)

    Google Scholar 

  24. Chen, Y., Hao, P.: Integer reversible transformation to make JPEG lossless. In: 2004 7th international conference on signal processing (2004)

  25. Bjontegaard, G.: Calculation of average PSNR differences between RD-curves (VCEG-M33). In: VCEG Meeting (ITU-T SG16 Q.6), Austin, Texas, USA (2001)

  26. The Linköping Thermal InfraRed (LTIR) dataset, [Online] http://www.cvl.isy.liu.se/en/research/datasets/ltir/. Accessed 12 Aug 2019

  27. ETH, [Online] http://projects.asl.ethz.ch/datasets/doku.php?id=ir:iricra2014. Accessed 12 Aug 2019

  28. Bins, J., Draper, B., Bohm, W., Najjar, W.: Precision vs. error in JPEG compression. In: Parallel and Distributed Methods in Image Processing III, SPIE, vol. 3817 (1999)

  29. Belyaev, E., Mantel, C., Forchhammer, S.: High bit depth infrared image compression via low bit depth codecs. In: SPIE Optical Engineering + Applications, Infrared Remote Sensing and Instrumentation XXV (2017)

  30. Belyaev, E., Mantel, C., Forchhammer, S.: Low-complexity compression of high dynamic range infrared images with JPEG compatibility. In: IEEE Visual Communication and Image Processing, St. Petersburg, Florida (2017)

  31. Richter, T., Simon, S.: Towards high-speed, low-complexity image coding: variants and modification of JPEG 2000. In: SPIE Applications of Digital Image Processing XXXV (2012)

  32. HM Software, https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/. Accessed 12 Aug 2019

  33. An open-source JPEG 2000 codec written in C, www.openjpeg.org/. Accessed 12 Aug 2019

  34. Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Trans. Gr. 21(3), 267–276 (2002)

    Article  Google Scholar 

  35. Choi, S., Kwon, O., Lee, J., Kim, Y.: A JPEG backward-compatible image coding scheme for high dynamic range images. Dig. Signal Process. 67, 1–16 (2017)

    Article  Google Scholar 

  36. Kwon, O., Choi, S., Shin, D.: Improvement of JPEG XT floating-point HDR image coding using region adaptive prediction. IEEE Access 6, 3321–3335 (2018)

    Article  Google Scholar 

  37. Drago, F., Myszkowski, K., Annen, T., Chiba, N.: Adaptive logarithmic mapping for displaying high contrast scenes. Comput. Gr. Forum 22(3), 419–426 (2003)

    Article  Google Scholar 

  38. Mai, Z., Mansour, H., et al.: Optimizing a tone curve for backward-compatible high dynamic range image and video compression. IEEE Trans. Image Process. 20(6), 1558–1571 (2011)

    Article  MathSciNet  Google Scholar 

  39. Mantiuk, R. et al.: HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions. In: ACM Transactions on Graphics, vol. 30(4) (2011)

  40. x265 HEVC Encoder / H.265 Video Codec, http://x265.org/. Accessed 12 Aug 2019

  41. Minimalistic JPEG writer, https://www.jonolick.com. Accessed 12 Aug 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Belyaev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported in part by the Danish energy technological development and demonstration program (EUDP), EUDP 15-I, 64015-0072, and in part by the Government of the Russian Federation through the ITMO Fellowship and Professorship Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, E., Forchhammer, S. Low-complexity open-loop coding of IDR infrared images having JPEG compatibility. J Real-Time Image Proc 17, 1547–1565 (2020). https://doi.org/10.1007/s11554-019-00898-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-019-00898-3

Keywords

Navigation