Skip to main content
Log in

Voxel transformation: scalable scene geometry discretization for global illumination

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

In real-time computer graphics, efficient discretization of scenes is required in order to accelerate graphics related algorithms such as realistic rendering with indirect illumination and visibility checking. Sparse voxel octree (SVO) is a popular data structure for such a discretization task. Populating an SVO with data is challenging when dynamic object count is high, especially when data per spatial location is large. Problem of populating such trees is adressed with our Voxel Transformation method, where pre-generated voxel data is transformed from model space to world space on demand, in contrast to the common way of voxelizing each dynamic object over each frame. Additionally, an accompanying filtering technique for voxel transformation is also proposed. This technique serves proposed system in two ways: (1) resolves issues introduced by the proposed fast and scalable voxel transformation method, and (2) enables smooth transitions between frames and handles the aliasing problem naturally as shown in the supplementary video. As an application use case, the proposed Voxel Transformation method is demonstrated in order to achieve indirect illumination using the well-known voxel cone tracing method. Results, which is compared with the standard voxelization method and ground-truth, are visually appealing and also scalable over large number of dynamic objects as shown in the supplementary video.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eisemann, E., Décoret, X.: Single-pass gpu solid voxelization for real-time applications. In: Proceedings of graphics interface 2008, GI ’08, pp. 73–80. Canadian Information Processing Society, Toronto, Ont., Canada, Canada (2008). http://dl.acm.org/citation.cfm?id=1375714.1375728

  2. Schwarz, M., Seidel, H.P.: Fast parallel surface and solid voxelization on gpus. ACM Trans. Graph. 29(6), 179:1–179:10 (2010). https://doi.org/10.1145/1882261.1866201

    Article  Google Scholar 

  3. Crassin, C., Green, S.: Octree-based sparse voxelization using the gpu hardware rasterizer. In: OpenGL Insights. CRC Press, Patrick Cozzi and Christophe Riccio (2012)

  4. Rauwendaal, R., Bailey, M.: Hybrid computational voxelization using the graphics pipeline. J. Comput. Graph. Tech. (JCGT) 2(1), 15–37 (2013). http://jcgt.org/published/0002/01/02/

    Google Scholar 

  5. Hasselgren, J., Akenine-Möller, T., Ohlsson, L.: Conservative rasterization. In: M. Pharr (ed.) GPU Gems 2, pp. 677–690. Addison-Wesley (2005)

  6. Takeshige, M.: The basics of gpu voxelization. https://developer.nvidia.com/content/basics-gpu-voxelization (2015). Accessed 3 Sep 2016

  7. Ritschel, T., Dachsbacher, C., Grosch, T., Kautz, J.: The state of the art in interactive global illumination. Comput. Graph. Forum 31(1), 160–188 (2012). https://doi.org/10.1111/j.1467-8659.2012.02093.x

    Article  Google Scholar 

  8. Davidovič, T., Křivánek, J., Hašan, M., Slusallek, P.: Progressive light transport simulation on the GPU: survey and improvements. ACM Trans. Graph. 33(3), 29:1–29:19 (2014). https://doi.org/10.1145/2602144

    Article  Google Scholar 

  9. Kajiya, J.T.: The rendering equation. SIGGRAPH. Comput. Graph. 20(4), 143–150 (1986)

    Article  Google Scholar 

  10. Lafortune, E.P., Willems, Y.: Bi-directional path tracing. In: Compugraphics ’93, pp. 145–153 (1993)

  11. Veach, E., Guibas, L.J.: Metropolis light transport. In: Proceedings of the 24th annual conference on computer graphics and interactive techniques, SIGGRAPH ’97, pp. 65–76. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1997). https://doi.org/10.1145/258734.258775

  12. Keller, A.: Instant radiosity. In: Proceedings of the 24th annual conference on computer graphics and interactive techniques, SIGGRAPH ’97, pp. 49–56. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1997). https://doi.org/10.1145/258734.258769

  13. Hašan, M., Pellacini, F., Bala, K.: Matrix row-column sampling for the many-light problem. ACM Trans. Graph. 26, 3 (2007). https://doi.org/10.1145/1276377.1276410

    Article  Google Scholar 

  14. Sun, C., Agu, E.: Many-lights real time global illumination using sparse voxel octree. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Pavlidis, I., Feris, R., McGraw, T., Elendt, M., Kopper, R., Ragan, E., Ye, Z., Weber, G. (eds.) Advances in Visual Computing, pp. 150–159. Springer International Publishing’, Cham (2015)

  15. Dachsbacher, C., Stamminger, M.: Reflective shadow maps. In: Proceedings of the 2005 symposium on interactive 3D graphics and games, I3D ’05, pp. 203–231. ACM, New York, NY, USA (2005). https://doi.org/10.1145/1053427.1053460

  16. Ritschel, T., Grosch, T., Kim, M.H., Seidel, H.P., Dachsbacher, C., Kautz, J.: Imperfect shadow maps for efficient computation of indirect illumination. ACM Trans. Graph. 27, 5 (2008). (Proc. of SIGGRAPH ASIA 2008)

    Google Scholar 

  17. Ritschel, T., Eisemann, E., Ha, I., Kim, J.D.K., Seidel, H.P.: Making imperfect shadow maps view-adaptive: high-quality global illumination in large dynamic scenes. Comput. Graph. Forum 30(8), 2258–2269 (2011). https://doi.org/10.1111/j.1467-8659.2011.01998.x

    Article  Google Scholar 

  18. Jensen, H.W.: Realistic Image Synthesis Using Photon Mapping. A. K. Peters Ltd, Natick (2001)

    Book  Google Scholar 

  19. McGuire, M., Luebke, D.: Hardware-accelerated global illumination by image space photon mapping. In: Proceedings of the conference on high performance graphics 2009, HPG ’09, pp. 77–89. ACM, New York, NY, USA (2009). https://doi.org/10.1145/1572769.1572783

  20. Yao, C., Wang, B., Chan, B., Yong, J., Paul, J.C.: Multi-image based photon tracing for interactive global illumination of dynamic scenes. In: Proceedings of the 21st eurographics conference on rendering, EGSR’10, pp. 1315–1324. Eurographics Association, Aire-la-Ville, Switzerland (2010)

  21. Ritschel, T., Engelhardt, T., Grosch, T., Seidel, H.P., Kautz, J., Dachsbacher, C.: Micro-rendering for scalable, parallel final gathering. ACM Trans. Graph. 28(5), 132:1–132:8 (2009). https://doi.org/10.1145/1618452.1618478

    Article  Google Scholar 

  22. Georgiev, I., Křivánek, J., Davidovič, T., Slusallek, P.: Light transport simulation with vertex connection and merging. ACM Trans. Graph. 31, XXX:1–XXX:10 (2012). SIGGRAPH Asia (2012)

  23. Debevec, P.: Rendering synthetic objects into real scenes: Bridging traditional and image-based graphics with global illumination and high dynamic range photography. In: Proceedings of the 25th annual conference on computer graphics and interactive techniques, SIGGRAPH ’98, pp. 189–198. ACM, New York, NY, USA (1998). https://doi.org/10.1145/280814.280864

  24. Ritschel, T., Grosch, T., Seidel, H.P.: Approximating dynamic global illumination in image space. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, I3D ’09, pp. 75–82. ACM, New York, NY, USA (2009). https://doi.org/10.1145/1507149.1507161

  25. Uludağ, Y.: Hi-z screen-space cone-traced reflections. In: Engel, W. (ed.) GPU Pro 5, pp. 149–192. CRC Press, Boca Raton (2014)

    Chapter  Google Scholar 

  26. Hermanns, L., Franke, T.A.: Screen space cone tracing for glossy reflections. In: ACM SIGGRAPH 2014 Posters, SIGGRAPH ’14, pp. 102:1–102:1. ACM, New York, NY, USA (2014). https://doi.org/10.1145/2614217.2614274

  27. Zhukov, S., Iones, A., Kronin, G.: An ambient light illumination model. In: Drettakis, G., Max, N., (eds.) Rendering techniques ’98: proceedings of the eurographics workshop, pp. 45–55. Springer, Vienna (1998). https://doi.org/10.1007/978-3-7091-6453-2_5

  28. Shanmugam, P., Arikan, O.: Hardware accelerated ambient occlusion techniques on gpus. In: Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games, I3D ’07, pp. 73–80. ACM, New York, NY, USA (2007). https://doi.org/10.1145/1230100.1230113

  29. Bavoil, L., Sainz, M., Dimitrov, R.: Image-space horizon-based ambient occlusion. In: ACM SIGGRAPH 2008 Talks, SIGGRAPH ’08, pp. 22:1–22:1. ACM, New York, NY, USA (2008). https://doi.org/10.1145/1401032.1401061

  30. McGuire, M., Mara, M., Nowrouzezahrai, D., Luebke, D.: Real-time global illumination using precomputed light field probes. In: Proceedings of the 21st ACM SIGGRAPH symposium on interactive 3D graphics and games, I3D ’17, pp. 2:1–2:11. ACM, New York, NY, USA (2017). https://doi.org/10.1145/3023368.3023378

  31. Greger, G., Shirley, P., Hubbard, P.M., Greenberg, D.P.: The irradiance volume. IEEE Comput. Graph. Appl. 18(2), 32–43 (1998). https://doi.org/10.1109/38.656788

    Article  Google Scholar 

  32. Vardis, K., Papaioannou, G., Gkaravelis, A.: Real-time radiance caching using chrominance compression. J. Comput. Graph. Tech. 3(4), 111–131 (2014)

    Google Scholar 

  33. Jendersie, J., Kuri, D., Grosch, T.: Real-time global illumination using precomputed illuminance composition with chrominance compression. J. Comput. Graph. Tech. (JCGT) 5(4), 8–35 (2016)

    Google Scholar 

  34. Kaplanyan, A., Dachsbacher, C.: Cascaded light propagation volumes for real-time indirect illumination. In: Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’10, pp. 99–107. ACM, New York, NY, USA (2010). https://doi.org/10.1145/1730804.1730821

  35. Crassin, C.: GigaVoxels: a voxel-based rendering pipeline for efficient exploration of large and detailed scenes. Ph.D. thesis, Université de Grenoble (2011)

  36. Crassin, C., Neyret, F., Sainz, M., Green, S., Eisemann, E.: Interactive indirect illumination using voxel-based cone tracing: an insight. In: ACM SIGGRAPH 2011 Talks, SIGGRAPH ’11, pp. 20:1–20:1. ACM, New York, NY, USA (2011). https://doi.org/10.1145/2037826.2037853

  37. Lefebvre, S., Hornus, S., Neyret, F.: GPU Gems 2 - Programming techniques for high-performance graphics and general-purpose computation, chap. Octree Textures on the GPU, pp. 595–613. Addison Wesley (2005)

Download references

Acknowledgements

This work has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under the Project EEEAG-115E471.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Sahillioğlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalçıner, B., Sahillioğlu, Y. Voxel transformation: scalable scene geometry discretization for global illumination. J Real-Time Image Proc 17, 1585–1596 (2020). https://doi.org/10.1007/s11554-019-00919-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-019-00919-1

Keywords

Navigation