Skip to main content
Log in

A real-time critical part detection for the blurred image of infrared reconnaissance balloon with boundary curvature feature analysis

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Detecting and striking the critical part of blurred balloon image is an important approach to counterattack the reconnaissance balloons. The existing algorithms of the image target detection task are not able to achieve the high precision and real-time performance in the meanwhile since the critical part of the balloon is tiny, weak and not easy to be segmented. In this paper, a real-time algorithm based curvature feature in the polar coordinate system is proposed to detect the critical part of reconnaissance balloons. We divide the proposed method into three steps: the image is firstly subjected to a gray-scale projection by calculating third-order post-difference, then the balloon boundary is extracted in transformed polar coordinates, and finally the boundary curvature identifies the position of the critical part. The core strategy of the proposed method is to adopt the boundary features of the balloon instead of the general time-consuming image operations (e.g. region labeling, matching) to capture the target part. The experimental results show that the proposed method obtains high precision results with a real-time detection. Our proposed method achieves a processing speed of 200 frames per second on DSP (TMS320C6678) while a state-of-the-art detection precision (>93\(\%\)), which overcomes the existing comparison algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Alcantarilla, P.F., Bartoli, A., Davison, A.J.: Kaze features. European Conference on Computer Vision (ECCV). Springer, Berlin (2012)

    Google Scholar 

  2. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. Comput. Vis. Pattern Recogn. 2010, 2544–2550 (2010)

    Google Scholar 

  3. Chao, M., Huang, J.B., Yang, X., Yang, M.H.: Adaptive correlation filters with long-term and short-term memory for object tracking. Int. J. Comput. Vis. 126(2), 1–26 (2017)

    Article  Google Scholar 

  4. Chen, C.L.P., Hong, L., Wei, Y., Tian, X., Yuan, Y.T.: A local contrast method for small infrared target detection. IEEE Trans. Geosci. Rem. Sens. 52(1), 574–581 (2013)

    Article  Google Scholar 

  5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. 1, 886–893 (2005)

    Google Scholar 

  6. Danelljan, M., Hager, G., Khan, F.S., Felsberg, M.: Discriminative scale space tracking. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1561–1575 (2017)

    Article  Google Scholar 

  7. Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Viosion (ICCV), pp. 1440–1448. Santiago (2015)

  8. Guan, L., Liu, S., Chu, J., Zhang, R., Chen, Y., Li, S., Zhai, L., Li, Y., Xie, H.: A novel algorithm for estimating the relative rotation angle of solar azimuth through single-pixel rings from polar coordinate transformation for imaging polarization navigation sensors. Optik 178, 868–878 (2019)

    Article  Google Scholar 

  9. Hao, Y., Mu, T., Goulermas, J.Y., Jiang, J., Hong, R., Wang, M.: Unsupervised t-distributed video hashing and its deep hashing extension. IEEE Trans. Image Process. 26(11), 5531–5544 (2017)

    Article  MathSciNet  Google Scholar 

  10. Hao, Y., Mu, T., Hong, R., Meng, W., Goulermas, J.Y.: Stochastic multiview hashing for large-scale near-duplicate video retrieval. IEEE Trans. Multimedia 19(1), 1–14 (2017)

    Article  Google Scholar 

  11. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)

    Article  Google Scholar 

  12. Huertas, A., Medioni, G.: Detection of intensity changes with subpixel accuracy using laplacian-gaussian masks. IEEE Trans. Pattern Anal. Mach. Intell. 8(5), 651–664 (1986)

    Article  Google Scholar 

  13. Jasani, B.A., Lam, S.K., Meher, P.K., Wu, M.: Threshold-guided design and optimization for harris corner detector architecture. IEEE Trans. Circ. Syst. Video Technol. 28(12), 3516–3526 (2017)

    Article  Google Scholar 

  14. Kanatani, K., Rangarajan, P.: Hyper least squares fitting of circles and ellipses. Comput. Stat. Data Anal. 55(6), 2197–2208 (2011)

    Article  MathSciNet  Google Scholar 

  15. Li, X., Qin, S.Y.: Efficient fusion for infrared and visible images based on compressive sensing principle. Iet Image Process. 5(2), 141–147 (2011)

    Article  Google Scholar 

  16. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: Ssd: Single shot multibox detector. Eur. Conf. Comput. Vis. 2016, 2137 (2016)

    Google Scholar 

  17. Lowe, D.G., Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  18. Lukežič, A., Vojíř, T., Zajc, L.Č., Matas, J., Kristan, M.: Discriminative correlation filter tracker with channel and spatial reliability. Int. J. Comput. Vis. 126(7), 671–688 (2018)

    Article  MathSciNet  Google Scholar 

  19. Possa, P.R., Mahmoudi, S.A., Harb, N., Valderrama, C., Manneback, P.: A multi-resolution fpga-based architecture for real-time edge and corner detection. IEEE Trans. Comput. 63(10), 2376–2388 (2013)

    Article  MathSciNet  Google Scholar 

  20. Redmon, J., Farhadi, A.: Yolo9000: Better, faster, stronger. arXiv:1612.08242 (2017)

  21. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2015)

    Article  Google Scholar 

  22. Schmidt-Richberg, A., Ehrhardt, J., Werner, R., Handels, H.: Fast explicit diffusion for registration with direction-dependent regularization. Lecture Notes Comput. Sci. 7359, 220–228 (2012)

    Article  Google Scholar 

  23. Tareen, S.A.K., Saleem, Z.: A comparative analysis of sift, surf, kaze, akaze, orb, and brisk. In: 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), IEEE, pp. 1–10 (2018)

  24. Vala, H.J., Baxi, A.: A review on otsu image segmentation algorithm. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 2(2), 387–389 (2013)

    Google Scholar 

  25. Wang, Q., Zhang, X., Chen, G., Fan, D., Gong, Y., Zhu, K.: Change detection based on faster r-cnn for high-resolution remote sensing images. Remote Sens. Lett. 9(10), 923–932 (2018)

    Article  Google Scholar 

  26. Xing, Y., Zhang, D., Zhao, J., Sun, M., Jia, W.: Robust fast corner detector based on filled circle and outer ring mask. Iet Image Process. 10(4), 314–324 (2016)

    Article  Google Scholar 

  27. Zhang, X., Pan, Z., Hu, B., Xi, Z., Liu, W.: Target detection of hyperspectral image based on spectral saliency. IET Image Process. 13(2), 316–322 (2019)

    Article  Google Scholar 

  28. Zhou, D., Zong, J.: Minimum error thresholding based on two dimensional histogram. Wri World Congress Comput. Sci. Inf. Eng. 7, 169–175 (2009)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (no. 61671337). We thank Mr.HuiYuan Chen of Wuhan Institute of Technology for assistance with experiments. Our deepest gratitude goes to the anonymous reviewers and editor for their careful work and thoughtful suggestions that have helped improve this paper substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinmeng Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, H., Shi, J., Liu, Z. et al. A real-time critical part detection for the blurred image of infrared reconnaissance balloon with boundary curvature feature analysis. J Real-Time Image Proc 18, 619–634 (2021). https://doi.org/10.1007/s11554-020-00997-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-020-00997-6

Keywords

Navigation