Skip to main content
Log in

A high-speed feature matching method of high-resolution aerial images

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

This paper presents a novel corner detection and scale estimation algorithm for image feature description and matching. Inspired by Adaboost’s weak classifier, a series of sub-detectors is elaborately designed to obtain reliable corner pixels. The new corner detection algorithm is more robust than the FAST and HARRIS algorithm, and it is especially suitable for the implementation in FPGA. The new scale estimation method can be directly implemented in the original image without building Gaussian pyramid and searching max response value in each level, which not only increase computational efficiency but also greatly reduces memory requirement. Based on the proposed algorithm, a CPU-FPGA cooperative parallel processing architecture is presented. The architecture overcomes the memory space limitation of FPGA and achieves high-speed feature matching for massive high-resolution aerial images. The speed of the CPU-FPGA cooperative process is hundred times faster than SIFT algorithm running on CPU, and dozens of times faster than SIFT running in CPU + GPU system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Zhang, B.: Intelligent remote sensing satellite system. Remote. Sens. 15(3), 415–431 (2011)

    Google Scholar 

  2. Zitová, B., Flusser, J.: Image registration methods: a survey. Image. Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

  3. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  4. Morel, J.M., Yu, G.: ASIFT: a new framework for fully affine invariant image comparison. SIAM. J. Imag. Sci. 2(2), 438–469 (2009)

    Article  MathSciNet  Google Scholar 

  5. Mikolajczyk, K., Tuyt Elaars, T., Schm Id, C.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(1–2), 163–186 (2005)

    Google Scholar 

  6. Kehl, C., Buckley, S.J., Viseur, S., et al.: Automatic illumination-invariant image-to-geometry registration in outdoor environments. Photogramm. Rec. 32(158), 93–118 (2017)

    Article  Google Scholar 

  7. Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. IEEE. Trans. Pattern. Anal. Mach. Intell. 30(2), 328–341 (2008)

    Article  Google Scholar 

  8. Boykov, Y., Veksler, O., Zabin, R.: Fast approximate energy minimization via graph cuts. IEEE. Trans. Pattern. Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  9. Sun, J., Shun, H.Y., Zheng, N.N.: Stereo matching using belief propagation. IEEE. Trans. Pattern. Anal. Mach. Intell. 25(7), 787–800 (2003)

    Article  Google Scholar 

  10. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)

    Article  Google Scholar 

  11. Lee, C.A., Gasster, S.D., Plaza, A.: Recent developments in high performance computing for remote sensing: a review. IEEE. J. Selec. Top. Appl. Earth. Observ. Remote. Sens. 4(3), 508–527 (2011)

    Article  Google Scholar 

  12. Avrithis, Y., Rapantzikos, K.: “The medial feature detector: Stable regions from image boundaries.” In: international conference on computer vision (ICCV) (2011)

  13. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image. Vis. Comput. 22(10), 761–767 (2004)

    Article  Google Scholar 

  14. Acharya, K.A., Venkatesh, B.R., Vadhiyar, S.S.: A real-time implementation of SIFT using GPU. J. Real. Time. Image. Proc. 14(2), 267–277 (2018)

    Article  Google Scholar 

  15. Li, Z., Jia, H., Zhang, Y.: HartSift: A high-accuracy and real-time SIFT based on GPU. 2017 IEEE 23rd international conference on parallel and distributed systems (ICPADS). IEEE computer society (2017)

  16. Jiang, C., Geng, Z.X., Wei, X.F., et al.: SIFT implementation based on GPU. ISPDI 2013-fifth international symposium on photoelectronic detection and imaging. International society for optics and photonics (2013)

  17. Patel, V., Patel, B.: Indexing SURF features by SVD based basis on GPU with multi-query support[C]// international conference on intelligent computing. Springer, Cham (2014)

  18. Huang, F.C., Huang, S.Y., Ker, J.W.: High-performance SIFT hardware accelerator for real-time image feature extraction. IEEE. Trans. Circuits. Syst. Video. Technol. 22(3), 340–351 (2012)

    Article  Google Scholar 

  19. Zhong, S., Wang, J., Yan, L.: A real-time embedded architecture for SIFT. J. Syst. Architect. 59(1), 16–29 (2013)

    Article  Google Scholar 

  20. Zhao J., Zhu S., Huang X.: Real-time traffic sign detection using SURF features on FPGA. In proceedings of the 2013 IEEE high performance extreme computing conference (HPEC), Waltham, MA, USA, 10–12 September: 1–6 (2013)

  21. Huang, J.J., Guoqing, Z.: On-Board Detection and Matching of Feature Points. J. Remote Sens 9(6), 1–17 (2017)

    Google Scholar 

  22. Qamar, A., Muslim, F., Gregoretti, F., et al.: High-level synthesis for semi-global matching: is the juice worth the squeeze? IEEE. Access. 99, 1–1 (2016)

    Google Scholar 

  23. Harris, C., Stephens, M.: A combined corner and edge detector. Proc. Alvey. Vis. Conf. Citeseer. 3, 147–151 (1988)

    Google Scholar 

  24. Amaricai, A., Gavriliu, C.E., Boncalo, O.: An fpga sliding window-based architecture harris corner detector. 2014 24th International conference on field programmable logic and applications (FPL), IEEE: 1–4 (2014)

  25. Chao, T.L., Wong, K.H.: An efficient FPGA implementation of the harris corner feature detector. 2015 14th IAPR International Conference on Machine Vision Applications (MVA), IEEE: 89–93 (2015)

  26. Brenot, F., Fillatreau P., Piat, J.: FPGA based accelerator for visual features detection. In: 2015 IEEE International Workshop of Electronics Control Measurement, Signals and their Application to Mechatronics (ECMSM) IEEE: 1–6 (2015)

  27. Rosten, E., Drummond, T.: FAST machine learning for high-speed corner detection. Eur. Conf. Comput. Vis. 2006, 1–14 (2006)

    Google Scholar 

  28. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. IEEE 2012 international conference on computer vision, 58 (11), 2564–2571 (2012)

  29. Weberruss, J., Kleeman, L., Drummond, T.: ORB feature extraction and matching in hardware. In proceedings of the Australasian conference on robotics and automation, the Australian National University, Canberra, Australia, 2–4 December; 1–10. (2015)

  30. Nurvitadhi, E., Sheffield. D., Sim. J.: Accelerating binarized neural networks: comparison of FPGA, CPU, GPU, and ASIC. International conference on field-programmable technology (2017)

  31. Puglia, L., Vigliar, M., Raiconi, G.: Real-time low-power FPGA architecture for stereo vision. IEEE. Trans. Circuits Syst. II Exp. Briefs. 64(1), 1307–1311 (2017)

    Article  Google Scholar 

  32. Gil, A., Mozos, O.M., Ballesta, M., Reinoso, O.: A comparative evaluation of interest point detectors and local descriptors for visual SLAM. Mach. Vis. Appl. 21(6), 905–920 (2010)

    Article  Google Scholar 

  33. Rosten, E., Porter, R., Drummond, T.: Faster and better: a machine learning approach to corner detection. IEEE. Trans. Pattern. Anal. Mach. Intell. 32(1), 105–119 (2008)

    Article  Google Scholar 

  34. Zhu, J., Arbor, A., Hastie, T.: Multi-class AdaBoost. Stat. Inter. 2, 349–360 (2006)

    MathSciNet  Google Scholar 

  35. Leutenegger, S., Chli, M., Siegwart, R. Y.: BRISK: binary robust invariant scalable keypoints. IEEE 2011 international conference on computer vision, 58 (11), 2548–2555 (2011)

  36. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In proceedings of the European conference on computer vision (ECCV). (2010)

  37. Krig, S.: Computer Vision Metrics: Survey, Taxonomy, and Analysis. Apress, Berkely, CA (2014)

  38. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. 9th European conference on computer vision, Graz: 430–443 (2006)

Download references

Acknowledgements

This work was partly supported by National Natural Science Foundation of China (41761087), Natural Science Foundation of Guangxi Province (2017GXNSFAA198162, 2020GXNSFAA159091), Guangxi emphasis laboratory for optoelectronics information Project (GD18108), and Innovation Project of Guangxi Graduate Education (YCBZ2017051, 2018YJCX64), at the same time, thank for the study abroad program for graduate student of Guilin University of Electronic Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Z., Wu, J., Zhang, Y. et al. A high-speed feature matching method of high-resolution aerial images. J Real-Time Image Proc 18, 705–722 (2021). https://doi.org/10.1007/s11554-020-01012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-020-01012-8

Keywords

Navigation