Skip to main content
Log in

Image normalization in embedded systems

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Normalization is a step in image processing that is used to reduce lighting and contrast effects, significantly increasing the accuracy of the entire solution. The face detection algorithm proposed by Viola-Jones popularized the image normalization process. The basis of this process consists in obtaining the integral image and its square integral. This process requires a greater amount of computational resources, being then avoided, particularly in embedded systems, even if it compromises the result of the solution. In this article we propose a way to implement the image normalization process from the integral of that image already stored in memory, without increasing the amount of external memory, accessing each value of integral stored only twice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Acasandrei, L., Barriga, A.: Accelerating viola-jones face detection for embedded and soc environments. In: 2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras, pp. 1–6. IEEE (2011)

  2. Acasandrei, L., Barriga, A.: Amba bus hardware accelerator ip for viola-jones face detection. IET Comput. Digit. Tech. 7(5), 200–209 (2013)

    Article  Google Scholar 

  3. Afifi, M., Nasser, M., Korashy, M., Rohde, K., Mohamed, A.A.: Can we boost the power of the viola-jones face detector using preprocessing? an empirical study. J. Electron. Imag. 27(4), 043020 (2018)

    Article  Google Scholar 

  4. Besnassi, M., Neggaz, N., Benyettou, A.: Face detection based on evolutionary haar filter. Pattern Analy. Appl. 23(1), 309–330 (2020)

    Article  Google Scholar 

  5. Cantürk, İ, Özyılmaz, L.: A computational approach to estimate postmortem interval using opacity development of eye for human subjects. Comput. Biol. Med. 98, 93–99 (2018)

    Article  Google Scholar 

  6. Comaschi, F.: Viola-jones face detection (2019). https://sites.google.com/site/5kk73gpu2012/assignment/viola-jones-face-detection

  7. Ehsan, S., Clark, A.F., Rehman, N.U., McDonald-Maier, K.D.: Integral images: efficient algorithms for their computation and storage in resource-constrained embedded vision systems. Sensors 15(7), 16804–16830 (2015)

    Article  Google Scholar 

  8. Fernández-Berni, J., Carmona-Galán, R., del Río, R., Leñero-Bardallo, J.A., Suárez-Cambre, M., Rodríguez-Vázquez, Á.: Smart imaging for power-efficient extraction of viola-jones local descriptors. In: Image Sensors and Imaging Systems 2014, vol. 9022, p. 902209. International Society for Optics and Photonics (2014)

  9. Fernández-Berni, J., Carmona-Galán, R., del Río, R., Rodríguez-Vázquez, A.: Bottom-up performance analysis of focal-plane mixed-signal hardware for viola-jones early vision tasks. Int. J. Cir. Theory. Appl. 43(8), 1063–1079 (2015)

    Article  Google Scholar 

  10. Gajjar, A., Yang, X., Wu, L., Koc, H., Unwala, I., Zhang, Y., Feng, Y.: An fpga synthesis of face detection algorithm using haar classifier. In: Proceedings of the 2018 2nd International Conference on Algorithms, Computing and Systems, pp. 133–137 (2018)

  11. Han, X., Liu, Y., Yang, H., Xing, G., Zhang, Y.: Normalization of face illumination with photorealistic texture via deep image prior synthesis. Neurocomputing 386, 305–16 (2020)

    Article  Google Scholar 

  12. Irgens, P., Bader, C., Lé, T., Saxena, D., Ababei, C.: An efficient and cost effective fpga based implementation of the viola-jones face detection algorithm. HardwareX 1, 68–75 (2017)

    Article  Google Scholar 

  13. Jacintha, V., Simon, J., Tamilarasu, S., Thamizhmani, R., Nagarajan, J., et al.: A review on facial emotion recognition techniques. In: 2019 International Conference on Communication and Signal Processing (ICCSP), pp. 0517–0521. IEEE (2019)

  14. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

  15. Kaur, A., Rani, U., Josan, G.S.: Modified sauvola binarization for degraded document images. Eng. Appl. Artific. Intel. 92, 103672 (2020)

    Article  Google Scholar 

  16. Kazmi, M., Aziz, A., Akhtar, P.: An efficient and compact row buffer architecture on fpga for real-time neighbourhood image processing. J. Real. Time. Image. Process. 16(5), 1845–1858 (2019)

    Article  Google Scholar 

  17. Kazmi, M., Aziz, A., Akhtar, P., Kundi, D.: Fpga based compact and efficient full image buffering for neighborhood operations. Adv. Electri. Comput. Eng. 15(1), 95–104 (2015)

    Article  Google Scholar 

  18. Marcin, K., Michał, S., Rafał, O.: Does image normalization and intensity resolution impact texture classification? Comput. Med. Imag. Graphics 81, 101716 (2020)

    Article  Google Scholar 

  19. Meynet, J., Popovici, V., Thiran, J.: Fast face detection using adaboost. Tech. rep. (2003)

  20. Monteiro, H.A., Campos, N.C., Oliveira, J.P., Lima, A.M.N., Brito, A.V., Melcher, E.U.: Energy consumption measurement of a fpga full-hd video processing platform. WCAS (2017)

  21. Spagnolo, F., Perri, S., Corsonello, P.: Design of a real-time face detection architecture for heterogeneous systems-on-chips. Integration 74, 1 (2020)

    Article  Google Scholar 

  22. Sultana, T., Hossain, M.D., Zead, N.H., Sarker, N.A., Fardoush, J.: A new approach for efficient face detection using bpv algorithm based on mathematical modeling. In: Proceedings of International Joint Conference on Computational Intelligence, pp. 345–358. Springer (2020)

  23. Suse, V., Ionescu, D.: A real-time reconfigurable architecture for face detection. In: 2015 International Conference on ReConFigurable Computing and FPGAs (ReConFig), pp. 1–6. IEEE (2015)

  24. Valenzuela-López, O.G., Tecpanecatl-Xihuitl, J.L., Aguilar-Ponce, R.M.: A novel low latency integral image architecture. In: 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), pp. 1–5. IEEE (2017)

  25. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vision. 57(2), 137–154 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heron Aragão Monteiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro, H.A., Brito, A.V.d. & Melcker, E.U.K. Image normalization in embedded systems. J Real-Time Image Proc 18, 2469–2478 (2021). https://doi.org/10.1007/s11554-021-01098-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-021-01098-8

Keywords

Navigation