Abstract
After the AOMedia Video 1 (AV1) bitstream specification was launched by the Alliance for Open Media, the need for converting legacy content encoded with the state-of-the-art High Efficiency Video Coding (HEVC) standard to the new format has arisen in several scenarios. However, transcoding is a complex task composed of a decoding and an encoding process in sequence, which requires long processing times and high energy consumption. This paper presents a complexity-scalable HEVC-to-AV1 transcoding scheme, which comprises 25 configuration modes chosen based on a Pareto Optimization strategy and built upon the correlation between block size decisions in HEVC and AV1. The configurations allow the AV1 encoder to inherit partitioning information from the HEVC bitstream to constrain the AV1 reencoding process, thus speeding up the transcoding operation. Experimental results showed that the proposed transcoding complexity reduction ranges from 0.41 up to 35.06%, on average, with coding efficiency losses that vary between 0.0536 and 5.3801%.










Similar content being viewed by others
References
Bross, B., Han, W., Ohm, J., Sullivan, G., Wang, Y., Wiegand, T.: High Efficiency Video Coding (HEVC): text specification draft 10 (for FDIS and Consent). In: 12th JCT-VC Meeting, Geneva, (JCTVC-L1003) (2013)
Lederer, S.: Bitmovin video developer report 2019, Bitmovin, 6 September (2019). https://bitmovin.com/bitmovin-2019-video-developer-report-av1-codec-ai-machine-learning-low-latency/. Accessed 4 Jan 2021
Vaughan, T.: HEVC advance reduces proposed license fees (2015). http://x265.org/hevc-advance-reduces-proposed-license-fees/. Accessed 8 Nov 2019
Ozer, J.: A video codec licensing update, streaming media (2019). https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=129386. Accessed 21 Dec 2019
Alliance for Open Media, Alliance for Open Media (2015). http://aomedia.org. Accessed 20 Feb 2018
XIPH, Daala video compression (2012). https://xiph.org/daala. Accessed 20 Feb 2018
Systems, Cisco, Thor video codec (2015). https://tools.ietf.org/html/draft-fuldseth-netvc-thor-03. Accessed 20 Feb 2018
Google, VP9 video codec (2012). https://www.webmproject.org/vp9. Accessed 20 Feb 2018
Chen, Y., et al.: An overview of core coding tools in the AV1 video codec. In: 2018 Picture Coding Symposium, PCS 2018—Proceedings, pp. 41–45 (2018). https://doi.org/10.1109/PCS.2018.8456249
Rivaz, P.D., Haughton, J.: AV1 bitstream & decoding process specification. Alliance for Open Media (2018). https://aomediacodec.github.io/av1-spec. Accessed 20 Aug 2018
HEVC HM Software (2019). https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/. Accessed 20 Feb 2018
Bjøntegaard, G.: Calculation of average PSNR differences between RD-curves (2001). http://wftp3.itu.int/av-arch/video-site/0104_Aus/VCEG-M33.doc. Accessed 15 Apr 2018
Ahmad, I., Wei, X., Sun, Y., Zhang, Y.-Q.: Video transcoding: an overview of various techniques and research issues. IEEE Trans. Multimedia (2005). https://doi.org/10.1109/TMM.2005.854472
Ding, D., Chen, G., Mukherjee, D., Joshi, U., Chen, Y.: A CNN-based in-loop filtering approach for AV1 video codec. In: 2019 Picture Coding Symposium (PCS), pp. 1–5 (2019). https://doi.org/10.1109/PCS48520.2019.8954565
Joshi, U., Mukherjee, D., Chen, Y., Parker, S., Grange, A.: In-loop frame super-resolution in AV1. In: 2019 Picture Coding Symposium (PCS), pp. 1–5 (2019). https://doi.org/10.1109/PCS48520.2019.8954553
Borges, A., Porto, M., Zatt, B., Correa, G.: Fast HEVC-to-AV1 transcoding based on coding unit depth inheritance. In: IEEE International Conference on Image Processing (2019). https://doi.org/10.1109/ICIP.2019.8803482
Laude, T., Adhisantoso, Y.G., Voges, J., Munderloh, M., Ostermann, J.: A Comprehensive Video Codec Comparison. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/ATSIP.2019.23
Tanou, J.L., Blestel, M.: Analysis of emerging video codecs: coding tools, compression efficiency. SMPTE Motion Imaging J. (2019). https://doi.org/10.5594/JMI.2019.2937736
Liapin, I.: Fast H. 264/H. 265 to AV1 stream transcoding using a moving object tracker. In: 2018 International Symposium on Consumer Technologies (ISCT), pp. 9–13 (2018). https://doi.org/10.1109/ISCE.2018.8408927
Sullivan, G., Wiegand, T.: Rate-distortion optimization for video compression. IEEE Signal Process Mag. (1998). https://doi.org/10.1109/79.733497
Daede, T., Norkin, A., Brailovskiy, I.: Video codec testing and quality measurement (2019). https://tools.ietf.org/html/draft-ietf-netvc-testing-08. Accessed 20 May 2019
Deb, K.: Multi-objective optimization. In: Burke, E., Kendall, G. (eds) Search Methodologies. Springer, Boston (2014). https://doi.org/10.1007/978-1-4614-6940-7_15
Marler, R., Arora, J.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26, 369–395 (2004). https://doi.org/10.1007/s00158-003-0368-6
Corrê, G., Assunção, P.A., Agostini, L.V., da Silva Cruz, L.A.: Pareto-based method for high efficiency video coding with limited encoding time. IEEE Trans. Circuits Syst. Video Technol. 26(9), 1734–1745 (2016). https://doi.org/10.1109/TCSVT.2015.2469533
Hwang, W., Lee, C., Peng, G.: Multi-objective optimization and characterization of pareto points for scalable coding. IEEE Trans. Circuits Syst. Video Technol. 29(7), 2096–2111 (2019). https://doi.org/10.1109/TCSVT.2018.2851999
Hosseini, E., Pakdaman, F., Hashemi, M.R., et al.: Fine-grain complexity control of HEVC intra prediction in battery-powered video codecs. J. Real-Time Image Process. (2020). https://doi.org/10.1007/s11554-020-00996-7
Fernández, D.G., Del Barrio, A.A., Botella, G., Meyer-Baese, U., Meyer-Baese, A., Grecos, C.: Information fusion based techniques for HEVC. In: Proc. SPIE 10223, Real-Time Image and Video Processing 2017, 102230M (2017). https://doi.org/10.1117/12.2262604
Fernández, D.G., Del Barrio, A.A., Botella, G., García, C., Prieto, M., Hermida, R.: Complexity reduction in the HEVC/H265 standard based on smooth region classification. Digit. Signal Process 73, 24–39 (2018). https://doi.org/10.1016/j.dsp.2017.11.001
Louafi, H., Coulombe, S., Cheriet, M.: Multi-objective optimization in dynamic content adaptation of slide documents. IEEE Trans. Serv. Comput. 10(2), 231–243 (2017)
Bossen, F.: Common test conditions and software. In: 12th Meeting VCEG (JCTVC-L1100). Switzerland, Geneva (2013)
Alliance for Open Media, AV1 codec library (2019). https://aomedia.googlesource.com/aom/. Accessed 20 Feb 2018
ITU-R P.910: Subjective video quality assessment methods for multi-media applications (2008). https://www.itu.int/rec/T-REC-P.910-200804-I. Accessed 20 Feb 2018
Liu, X., Zhu, W., Yoo, K.-Y.: Fast inter mode decision algorithm based on the MB activity for MPEG-2 to H.264/AVC transcoding. In: 2009 International Conference on Computational Science and Engineering (2009). https://doi.org/10.1109/CSE.2009.359
Tang, Q., Nasiopoulos, P.: Efficient motion re-estimation with rate-distortion optimization for MPEG-2 to H.264/AVC transcoding. IEEE Trans. Circuits Syst. Video Technol. (2010). https://doi.org/10.1109/TCSVT.2009.2031521
International Organization for Standardization, ISO/IEC 13818-2:1996. Information technology—generic coding of moving pictures and associated audio information: video (1996). https://www.iso.org/standard/22990.html. Accessed 20 Feb 2018
International Telecommunication Union: Recommendation H.264: advanced video coding for generic audiovisual services (2003). https://www.itu.int/rec/T-REC-H.264/. Accessed 20 Feb 2018
Acknowledgements
This study was financed in part by the Coordena-ção de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, FAPEGS, and CNPq.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Borges, A., Zatt, B., Porto, M. et al. Complexity-scalable HEVC-to-AV1 video transcoding based on partition inheritance. J Real-Time Image Proc 18, 2151–2163 (2021). https://doi.org/10.1007/s11554-021-01101-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-021-01101-2