Abstract
The vision problem of drivers during the night is mainly owing to the high-intensity headlight-beam of the oncoming vehicle from the reverse direction. It causes temporary blindness to the driver. To overcome this situation, people generally use color windshield glass, sun visor, and night-vision glass. But, these are not considered as the best solution since it decreases the light intensity of the entire view including the road. Many researchers used various image enhancement techniques to overcome this situation. But, the existing approaches are unable to dim the high-beam headlights of oncoming vehicles without affecting the road view. In this paper, a novel night-vision system is proposed to resolve the problem in real-time for manual-driving vehicles and autonomous vehicles. The proposed method includes region segmentation of frames, local enhancement techniques in different regions followed by adaptive Gaussian filtering. Pixels masking, gamma correction, and low-light pixel enhancement are applied to three distinct regions. Both autonomous vehicles and manual drivers can get a bright and a prominent view of the road with dim headlights of oncoming vehicles in real-time. Numerous heuristic real-time test reveals the performance superiority of the projected system compared to state-of-art methods in quantitative as well as qualitative point of view.














Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Organization, W.H.: Violence and injury prevention and World Health Organization: Global Status Report on Road Safety 2018: Supporting a Decade of Action, Geneve (2018)
Rolison, J.J., Regev, S., Moutari, S., Feeney, A.: What are the factors that contribute to road accidents? An assessment of law enforcement views, ordinary drivers’ opinions, and road accident records. Accid. Anal. Prev. 115, 11–24 (2018). https://doi.org/10.1016/j.aap.2018.02.025
Singh, M, Tiwari, R.K., Swami, K., Vijayvargiya, A.: Detection of glare in night photography. In: 23rd International Conference on Pattern Recognition (ICPR), Cancun, pp. 865–870 (2016)
Choudhary, S.K., Suman, R., Sonali, B.H.: Electronic head lamp glare management system for automobile applications. Int. J. Res. Advent Technol. 2(5), 402–416 (2014)
Andalibi, M., Chandler, D.: Automatic glare detection via photometric, geometric, and global positioning information. S&T Int. Symp. Electron. Imaging Auton. Veh. Mach. 2017(6), 77–82 (2017)
Singh, K.B., Mahendra, T.V., Kurmvanshi, R.S., Rao, C.V.: Image enhancement with the application of local and global enhancement methods for dark images. In: 2017 International Conference on Innovations in Electronics, Signal Processing and Communication (IESC), pp. 199–202 (2017)
Velez, G., Cortés, A., Nieto, M., et al.: A reconfigurable embedded vision system for advanced driver assistance. J. Real-Time Image Proc. 10, 725–739 (2015). https://doi.org/10.1007/s11554-014-0412-3
Turturici, M., Saponara, S., Fanucci, L., et al.: Low-power DSP system for real-time correction of fish-eye cameras in automotive driver assistance applications. J. Real-Time Image Proc. 9, 463–478 (2014). https://doi.org/10.1007/s11554-013-0330-9
Rotaru, C., Graf, T., Zhang, J.: Color image segmentation in HSI space for automotive applications. J. Real-Time Image Proc. 3, 311–322 (2008). https://doi.org/10.1007/s11554-008-0078-9
Farhat, W., Faiedh, H., Souani, C., et al.: Real-time embedded system for traffic sign recognition based on ZedBoard. J. Real-Time Image Proc. 16, 1813–1823 (2019). https://doi.org/10.1007/s11554-017-0689-0
Hmida, R., Ben-Abdelali, A., Mtibaa, A.: Hardware implementation and validation of a traffic road sign detection and identification system. J. Real-Time Image Proc. 15, 13–30 (2018). https://doi.org/10.1007/s11554-016-0579-x
Yu, Y.H., Ting, Y.S., Kwok, N., et al.: High-speed gaze detection using a single FPGA for driver assistance systems. J Real-Time Image Proc (2020). https://doi.org/10.1007/s11554-020-01004-8
Cheng, K., Yu, Y., Zhou, H., et al.: GPU fast restoration of non-uniform illumination images. J. Real-Time Image Proc. 18, 75–83 (2021). https://doi.org/10.1007/s11554-020-00950-7
Yang, X., Jian, L., Wu, W., et al.: Implementing real-time RCF-Retinex image enhancement method using CUDA. J. Real-Time Image Proc. 16, 115–125 (2019). https://doi.org/10.1007/s11554-018-0803-y
Tripathy, A.K., Kayande, D., George, J., John, J., Jose, B.: Wi lights: A wireless solution to control headlight intensity. In: 2015 International Conference on Technologies for Sustainable Development (ICTSD), Mumbai, pp. 1–5 (2015)
Sourav, C.P., Karthika, K.A., Saju, A., Gayathri, T.: Automatic headlight intensity controller. Int. J. Res. Appl. Sci. Eng. Technol. 7(5), 1592–1595 (2019)
Lakshmi, K., Nevetha, R., Ilakkiya, S.N., Ganesan, R.: Automatic vehicle headlight management system to prevent accidents due to headlight glare. Int. J. Innov. Technol. Explor. Eng. 8(9), 757–760 (2019)
Arpita, K., Akhila, M.J., Avi, K.R.: Automated headlight intensity control and obstacle alerting system. Int. J. Eng. Res. Technol. 6(13), 1–6 (2018)
Chilla, D., Joshi, M., Kajale, S., Deoghare, S.U.: Headlight intensity control methods a review. Int. J. Innov. Res. Comput. Commun. Eng. 4(2), 1140–1146 (2016)
Mutua, P.W., Mbuthia, M.: Intelligent lighting system design with fuzzy logic controller. Int. J. Electron. Commun. Technol. 6(2), 9–14 (2015)
Karthik, M.M.: Automated headlight intensity control and obstacle alerting system. Int. Res. J. Eng. Technol. (IRJET). 3(6), 2553–2555 (2016)
Reshma, J.S., Raj, M.S.: Security alarm using IR transmitter. Int. J. Pure Appl. Math. 119(12), 11557–11566 (2018)
Vigil, M.S.A., Sikerwar, N.K.D., Joshi, M.: A review on RC-home automation using LDR and IR sensors. Int. J. Pure Appl. Math. 118(20), 3555–3560 (2018)
Kaushik, K.S., Athish, S., Shetty, V., Kumar, Y.: Automatic brightness adjustment of streetlights based on the presence of vehicles. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 7(5), 282–284 (2017)
Hamza, S.A.E., Mustafa, A.B.A.: The use of pulse width modulation “PWM” Technique in LED lighting systems. Int. J. Sci. Res. 3(11), 2316–2320 (2014)
Sathe, A., Roshankhede, P., Golar, P., Chitatwar, C.: Reducing headlight intensity to improve street visibility. Int. J. Adv. Res. Ideas Innov. Technol. 4(2), 1682–1686 (2018)
Jenipher, S.A., Aswin, P., Gowsalya, S., Devi, C.M., Baskaran, D.: Automated headlight intensity controller and speed control in vehicles. J. Netw. Sec. 7(2), 1–5 (2019)
Ahire, A.A.: Night vision system in BMW. Int. Rev. Appl. Eng. Res. 4(1), 1–10 (2014)
Yawale, A.D., Raskar, V.B.: Pedestrian detection by video processing using thermal and night vision system. Int. Res. J. Eng. Technol. (IRJET) 03(12), 852–858 (2016)
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot multibox detector. In: Computer Vision and Pattern Recognition. Springer, Cham (2016)
Zaitoun, N.M., Aqel, M.J.: Survey on Image Segmentation Techniques. In: International Conference on Communication, Management and Information Technology (ICCMIT 2015), Prague, Czech Republic, pp. 797–806 (2015)
Kabade, A.L., Sangam, V.G.: Canny edge detection algorithm. Int. J. Adv. Res. Electron. Commun. Eng. (IJARECE) 5(5), 1292–1295 (2016)
Xin, G., Ke, C., Xiaoguang, H.: An improved Canny edge detection algorithm for colour image. In: IEEE 10th International Conference on Industrial Informatics, Beijing, pp. 113–117 (2012)
Rong, W., Li, Z., Zhang, W., Sun, L.: An improved Canny edge detection algorithm. In: 2014 IEEE International Conference on Mechatronics and Automation, Tianjin, pp. 577–582 (2014)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)
Verma, O.P., Hanmandlu, M., Susan, S., Kulkarni, M., Jain, P.K.: A simple single seeded region growing algorithm for color image segmentation using adaptive thresholding. In: 2011 International Conference on Communication Systems and Network Technologies, Katra, Jammu, pp. 500–503 (2011)
Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)
Kamdi, S., Krishna, R.K.: Image segmentation and region growing algorithm. Int. J. Comput. Technol. Electron. Eng. 2(1), 103–107 (2012)
Mancas, M., Gosselin, B., Benoit, M.: Segmentation using a region growing thresholding. In: Proceedings of SPIE-The International Society for Optical Engineering, Belgium, pp. 388–398 (2006)
Rahman, S., Rahman, M.M., Abdullah-Al-Wadud, M., Al-Quaderi, G.D., Shoyaib, M.: An adaptive gamma correction for image enhancement. EURASIP J. Image Video Process. 35(1), 1–13 (2016)
Huang, S.C., Cheng, F.C., Chiu, Y.S.: Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans. Image Process. 22(3), 1032–1041 (2013)
Kaur, N., Seema, K.S.: Improved adaptive gamma correction technique on gray scale images using image enhancement. Int. J. Adv. Comput. Eng. Netw. 4(4), 55–59 (2016)
Ren, Y., Ying, Z., Li, T.H., Li, G.: LECARM: low-light image enhancement using the camera response model. IEEE Trans. Circuits Syst. Video Technol. 29(4), 968–981 (2019)
Lv, F., Lu, F., Wu, J., Lim, C.: MBLLEN: Low-light image/video enhancement using CNNs. In: 29th British Machine Vision Conference, Northumbria University, UK, pp. 1–13 (2018)
Lv, F., Li, Y., Lu, F.: Attention guided low-light image enhancement with a large scale low-light simulation dataset (2019). arXiv:1908.00682
Tanaka, M., Shibata, T., Okutomi, M.: Gradient-Based Low-Light Image Enhancement. 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, pp. 1–2 (2019)
Navinprashath, R., Bhat, R., Chepuri, N.K., Manalody, T.K., Ghosh, D.: Real time enhancement of low light images for low cost embedded platforms. Electron. Imaging. 2019(9), 3611–3614 (2019)
Gu, Z., Chen, C., Zhang, D.: A low-light image enhancement method based on image degradation model and pure pixel ratio prior. Math. Probl. Eng. 2018(9), 1–19 (2018)
Kim, W., Lee, R., Park, M., Lee, S.: Low-light image enhancement based on maximal diffusion values. IEEE Access 7, 129150–129163 (2019)
Hsieh, P.W., Shao, P.C., Yang, S.Y.: Adaptive variational model for contrast enhancement of low-light images. SIAM J. Imag. Sci. 13(1), 1–28 (2020)
Guo, X., Li, Y., Ling, H.: LIME: Low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2017)
Chaudhary, A., Raheja, J.L.: Light invariant real-time robust hand gesture recognition. Optik 159, 283–294 (2018)
Shi, Z., Zhu, M.M., Guo, B., Zhao, M., Zhang, C.: Nighttime low illumination image enhancement with single image using bright/dark channel prior. EURASIP J. Image Video Process. 2018(13), 1–15 (2018)
Lee, H., Sohn, K., Min, D.: Unsupervised low-light image enhancement using bright channel prior. IEEE Signal Process. Lett. 27, 251–255 (2020)
Salazar-Colores, S., Cabal-Yepez, E., Ramos-Arreguin, J.M., Botella, G., Ledesma-Carrillo, L.M., Ledesma, S.: A fast image dehazing algorithm using morphological reconstruction. IEEE Trans. Image Process. 28(5), 2357–2366 (2019)
Simi, V.R., Edla, D.R., Joseph, J., Kuppili, V.: Analysis of controversies in the formulation and evaluation of restoration algorithms for MR images. Expert Syst. Appl. 135, 39–59 (2019). https://doi.org/10.1016/j.eswa.2019.06.003
Kuppusamy, P.G., Joseph, J., Jayaraman, S.: A customized nonlocal restoration schemes with adaptive strength of smoothening for magnetic resonance images. Biomed. Signal Process. Control 49, 160–172 (2019). https://doi.org/10.1016/j.bspc.2018.12.012
Joseph, J., Sivaraman, J., Periyasamy, R., Simi, V.R.: Noise based computation of decay control parameter in nonlocal means filter for MRI restoration. J. Med. Imaging Health Inform. 6(4), 1027–1037 (2016). https://doi.org/10.1166/jmihi.2016.1780
Joseph, J., Sivaraman, J., Periyasamy, R., Simi, V.R.: An objective method to identify optimum clip-limit and histogram specification of contrast limited adaptive histogram equalization for MR images. Biocybern. Biomed. Eng. 37(3), 489–497 (2017). https://doi.org/10.1016/j.bbe.2016.11.006
Joseph, J., Periyasamy, R.: An image driven bilateral filter with adaptive range and spatial parameters for denoising magnetic resonance images. Comput. Electr. Eng. 69, 782–795 (2018). https://doi.org/10.1016/j.compeleceng.2018.02.033
Joseph, J., Periyasamy, R.: An analytical method for the adaptive computation of threshold of gradient modulus in 2D anisotropic diffusion filter. Biocybern. Biomed. Eng. 37(1), 1–10 (2017). https://doi.org/10.1016/j.bbe.2016.12.002
Kumar, M., Mishra, S.K., Joseph, J., Jangir, S.K., Goyal, D.: Adaptive comprehensive particle swarm optimisation-based functional-link neural network filtre model for denoising ultrasound images. IET Image Proc. (2021). https://doi.org/10.1049/ipr2.12100
Seddik, H.: A new family of Gaussian filters with adaptive lobe location and smoothing strength for efficient image restoration. EURASIP J. Adv. Signal Process. 2014(25), 1–11 (2014)
Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Madhavan, V., Darrell, T.: Bdd100k: a diverse driving dataset for heterogeneous multitask learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Nashville, United States, pp. 2636–2645 (2020).
Caldwell, B., Cooper, M., Reid, L. G., Vanderheiden, G., Chisholm, W., Slatin, J., White, J.: Web content accessibility guidelines (WCAG) 2.0. WWW Consortium (W3C), 290 (2008)
International Electrotechnical Commission: Colour measurement and management in multimedia systems and equipment-part 2–1: Default RGB colour space–sRGB. TEC 6, 1966 (1999)
Gu, K., Lin, W., Zhai, G., Yang, X., Zhang, W., Chen, C.W.: No-reference quality metric of contrast-distorted images based on information maximization. IEEE Trans. Cybern. 47(12), 4559–4565 (2017)
Gu, K., Tao, D., Qiao, J., Lin, W.: Learning a no-reference quality assessment model of enhanced images with big data. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1301–1313 (2018)
Acknowledgements
The authors would like to acknowledge the National Institute of Technology Agartala, Tripura, India for providing a world-class research environment including research laboratory.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mandal, G., Bhattacharya, D. & De, P. Real-time automotive night-vision system for drivers to inhibit headlight glare of the oncoming vehicles and enhance road visibility. J Real-Time Image Proc 18, 2193–2209 (2021). https://doi.org/10.1007/s11554-021-01104-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-021-01104-z