Skip to main content
Log in

Real-time automotive night-vision system for drivers to inhibit headlight glare of the oncoming vehicles and enhance road visibility

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

The vision problem of drivers during the night is mainly owing to the high-intensity headlight-beam of the oncoming vehicle from the reverse direction. It causes temporary blindness to the driver. To overcome this situation, people generally use color windshield glass, sun visor, and night-vision glass. But, these are not considered as the best solution since it decreases the light intensity of the entire view including the road. Many researchers used various image enhancement techniques to overcome this situation. But, the existing approaches are unable to dim the high-beam headlights of oncoming vehicles without affecting the road view. In this paper, a novel night-vision system is proposed to resolve the problem in real-time for manual-driving vehicles and autonomous vehicles. The proposed method includes region segmentation of frames, local enhancement techniques in different regions followed by adaptive Gaussian filtering. Pixels masking, gamma correction, and low-light pixel enhancement are applied to three distinct regions. Both autonomous vehicles and manual drivers can get a bright and a prominent view of the road with dim headlights of oncoming vehicles in real-time. Numerous heuristic real-time test reveals the performance superiority of the projected system compared to state-of-art methods in quantitative as well as qualitative point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Organization, W.H.: Violence and injury prevention and World Health Organization: Global Status Report on Road Safety 2018: Supporting a Decade of Action, Geneve (2018)

  2. Rolison, J.J., Regev, S., Moutari, S., Feeney, A.: What are the factors that contribute to road accidents? An assessment of law enforcement views, ordinary drivers’ opinions, and road accident records. Accid. Anal. Prev. 115, 11–24 (2018). https://doi.org/10.1016/j.aap.2018.02.025

    Article  Google Scholar 

  3. Singh, M, Tiwari, R.K., Swami, K., Vijayvargiya, A.: Detection of glare in night photography. In: 23rd International Conference on Pattern Recognition (ICPR), Cancun, pp. 865–870 (2016)

  4. Choudhary, S.K., Suman, R., Sonali, B.H.: Electronic head lamp glare management system for automobile applications. Int. J. Res. Advent Technol. 2(5), 402–416 (2014)

    Google Scholar 

  5. Andalibi, M., Chandler, D.: Automatic glare detection via photometric, geometric, and global positioning information. S&T Int. Symp. Electron. Imaging Auton. Veh. Mach. 2017(6), 77–82 (2017)

    Google Scholar 

  6. Singh, K.B., Mahendra, T.V., Kurmvanshi, R.S., Rao, C.V.: Image enhancement with the application of local and global enhancement methods for dark images. In: 2017 International Conference on Innovations in Electronics, Signal Processing and Communication (IESC), pp. 199–202 (2017)

  7. Velez, G., Cortés, A., Nieto, M., et al.: A reconfigurable embedded vision system for advanced driver assistance. J. Real-Time Image Proc. 10, 725–739 (2015). https://doi.org/10.1007/s11554-014-0412-3

    Article  Google Scholar 

  8. Turturici, M., Saponara, S., Fanucci, L., et al.: Low-power DSP system for real-time correction of fish-eye cameras in automotive driver assistance applications. J. Real-Time Image Proc. 9, 463–478 (2014). https://doi.org/10.1007/s11554-013-0330-9

    Article  Google Scholar 

  9. Rotaru, C., Graf, T., Zhang, J.: Color image segmentation in HSI space for automotive applications. J. Real-Time Image Proc. 3, 311–322 (2008). https://doi.org/10.1007/s11554-008-0078-9

    Article  Google Scholar 

  10. Farhat, W., Faiedh, H., Souani, C., et al.: Real-time embedded system for traffic sign recognition based on ZedBoard. J. Real-Time Image Proc. 16, 1813–1823 (2019). https://doi.org/10.1007/s11554-017-0689-0

    Article  Google Scholar 

  11. Hmida, R., Ben-Abdelali, A., Mtibaa, A.: Hardware implementation and validation of a traffic road sign detection and identification system. J. Real-Time Image Proc. 15, 13–30 (2018). https://doi.org/10.1007/s11554-016-0579-x

    Article  Google Scholar 

  12. Yu, Y.H., Ting, Y.S., Kwok, N., et al.: High-speed gaze detection using a single FPGA for driver assistance systems. J Real-Time Image Proc (2020). https://doi.org/10.1007/s11554-020-01004-8

    Article  Google Scholar 

  13. Cheng, K., Yu, Y., Zhou, H., et al.: GPU fast restoration of non-uniform illumination images. J. Real-Time Image Proc. 18, 75–83 (2021). https://doi.org/10.1007/s11554-020-00950-7

    Article  Google Scholar 

  14. Yang, X., Jian, L., Wu, W., et al.: Implementing real-time RCF-Retinex image enhancement method using CUDA. J. Real-Time Image Proc. 16, 115–125 (2019). https://doi.org/10.1007/s11554-018-0803-y

    Article  Google Scholar 

  15. Tripathy, A.K., Kayande, D., George, J., John, J., Jose, B.: Wi lights: A wireless solution to control headlight intensity. In: 2015 International Conference on Technologies for Sustainable Development (ICTSD), Mumbai, pp. 1–5 (2015)

  16. Sourav, C.P., Karthika, K.A., Saju, A., Gayathri, T.: Automatic headlight intensity controller. Int. J. Res. Appl. Sci. Eng. Technol. 7(5), 1592–1595 (2019)

    Google Scholar 

  17. Lakshmi, K., Nevetha, R., Ilakkiya, S.N., Ganesan, R.: Automatic vehicle headlight management system to prevent accidents due to headlight glare. Int. J. Innov. Technol. Explor. Eng. 8(9), 757–760 (2019)

    Google Scholar 

  18. Arpita, K., Akhila, M.J., Avi, K.R.: Automated headlight intensity control and obstacle alerting system. Int. J. Eng. Res. Technol. 6(13), 1–6 (2018)

    Google Scholar 

  19. Chilla, D., Joshi, M., Kajale, S., Deoghare, S.U.: Headlight intensity control methods a review. Int. J. Innov. Res. Comput. Commun. Eng. 4(2), 1140–1146 (2016)

    Google Scholar 

  20. Mutua, P.W., Mbuthia, M.: Intelligent lighting system design with fuzzy logic controller. Int. J. Electron. Commun. Technol. 6(2), 9–14 (2015)

    Google Scholar 

  21. Karthik, M.M.: Automated headlight intensity control and obstacle alerting system. Int. Res. J. Eng. Technol. (IRJET). 3(6), 2553–2555 (2016)

    MathSciNet  Google Scholar 

  22. Reshma, J.S., Raj, M.S.: Security alarm using IR transmitter. Int. J. Pure Appl. Math. 119(12), 11557–11566 (2018)

    Google Scholar 

  23. Vigil, M.S.A., Sikerwar, N.K.D., Joshi, M.: A review on RC-home automation using LDR and IR sensors. Int. J. Pure Appl. Math. 118(20), 3555–3560 (2018)

    Google Scholar 

  24. Kaushik, K.S., Athish, S., Shetty, V., Kumar, Y.: Automatic brightness adjustment of streetlights based on the presence of vehicles. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 7(5), 282–284 (2017)

    Google Scholar 

  25. Hamza, S.A.E., Mustafa, A.B.A.: The use of pulse width modulation “PWM” Technique in LED lighting systems. Int. J. Sci. Res. 3(11), 2316–2320 (2014)

    Google Scholar 

  26. Sathe, A., Roshankhede, P., Golar, P., Chitatwar, C.: Reducing headlight intensity to improve street visibility. Int. J. Adv. Res. Ideas Innov. Technol. 4(2), 1682–1686 (2018)

    Google Scholar 

  27. Jenipher, S.A., Aswin, P., Gowsalya, S., Devi, C.M., Baskaran, D.: Automated headlight intensity controller and speed control in vehicles. J. Netw. Sec. 7(2), 1–5 (2019)

    Google Scholar 

  28. Ahire, A.A.: Night vision system in BMW. Int. Rev. Appl. Eng. Res. 4(1), 1–10 (2014)

    Google Scholar 

  29. Yawale, A.D., Raskar, V.B.: Pedestrian detection by video processing using thermal and night vision system. Int. Res. J. Eng. Technol. (IRJET) 03(12), 852–858 (2016)

    Google Scholar 

  30. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot multibox detector. In: Computer Vision and Pattern Recognition. Springer, Cham (2016)

    Google Scholar 

  31. Zaitoun, N.M., Aqel, M.J.: Survey on Image Segmentation Techniques. In: International Conference on Communication, Management and Information Technology (ICCMIT 2015), Prague, Czech Republic, pp. 797–806 (2015)

  32. Kabade, A.L., Sangam, V.G.: Canny edge detection algorithm. Int. J. Adv. Res. Electron. Commun. Eng. (IJARECE) 5(5), 1292–1295 (2016)

    Google Scholar 

  33. Xin, G., Ke, C., Xiaoguang, H.: An improved Canny edge detection algorithm for colour image. In: IEEE 10th International Conference on Industrial Informatics, Beijing, pp. 113–117 (2012)

  34. Rong, W., Li, Z., Zhang, W., Sun, L.: An improved Canny edge detection algorithm. In: 2014 IEEE International Conference on Mechatronics and Automation, Tianjin, pp. 577–582 (2014)

  35. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Google Scholar 

  36. Verma, O.P., Hanmandlu, M., Susan, S., Kulkarni, M., Jain, P.K.: A simple single seeded region growing algorithm for color image segmentation using adaptive thresholding. In: 2011 International Conference on Communication Systems and Network Technologies, Katra, Jammu, pp. 500–503 (2011)

  37. Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)

    Google Scholar 

  38. Kamdi, S., Krishna, R.K.: Image segmentation and region growing algorithm. Int. J. Comput. Technol. Electron. Eng. 2(1), 103–107 (2012)

    Google Scholar 

  39. Mancas, M., Gosselin, B., Benoit, M.: Segmentation using a region growing thresholding. In: Proceedings of SPIE-The International Society for Optical Engineering, Belgium, pp. 388–398 (2006)

  40. Rahman, S., Rahman, M.M., Abdullah-Al-Wadud, M., Al-Quaderi, G.D., Shoyaib, M.: An adaptive gamma correction for image enhancement. EURASIP J. Image Video Process. 35(1), 1–13 (2016)

    Google Scholar 

  41. Huang, S.C., Cheng, F.C., Chiu, Y.S.: Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans. Image Process. 22(3), 1032–1041 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Kaur, N., Seema, K.S.: Improved adaptive gamma correction technique on gray scale images using image enhancement. Int. J. Adv. Comput. Eng. Netw. 4(4), 55–59 (2016)

    Google Scholar 

  43. Ren, Y., Ying, Z., Li, T.H., Li, G.: LECARM: low-light image enhancement using the camera response model. IEEE Trans. Circuits Syst. Video Technol. 29(4), 968–981 (2019)

    Google Scholar 

  44. Lv, F., Lu, F., Wu, J., Lim, C.: MBLLEN: Low-light image/video enhancement using CNNs. In: 29th British Machine Vision Conference, Northumbria University, UK, pp. 1–13 (2018)

  45. Lv, F., Li, Y., Lu, F.: Attention guided low-light image enhancement with a large scale low-light simulation dataset (2019). arXiv:1908.00682

  46. Tanaka, M., Shibata, T., Okutomi, M.: Gradient-Based Low-Light Image Enhancement. 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, pp. 1–2 (2019)

  47. Navinprashath, R., Bhat, R., Chepuri, N.K., Manalody, T.K., Ghosh, D.: Real time enhancement of low light images for low cost embedded platforms. Electron. Imaging. 2019(9), 3611–3614 (2019)

    Google Scholar 

  48. Gu, Z., Chen, C., Zhang, D.: A low-light image enhancement method based on image degradation model and pure pixel ratio prior. Math. Probl. Eng. 2018(9), 1–19 (2018)

    Google Scholar 

  49. Kim, W., Lee, R., Park, M., Lee, S.: Low-light image enhancement based on maximal diffusion values. IEEE Access 7, 129150–129163 (2019)

    Google Scholar 

  50. Hsieh, P.W., Shao, P.C., Yang, S.Y.: Adaptive variational model for contrast enhancement of low-light images. SIAM J. Imag. Sci. 13(1), 1–28 (2020)

    MathSciNet  MATH  Google Scholar 

  51. Guo, X., Li, Y., Ling, H.: LIME: Low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Chaudhary, A., Raheja, J.L.: Light invariant real-time robust hand gesture recognition. Optik 159, 283–294 (2018)

    Google Scholar 

  53. Shi, Z., Zhu, M.M., Guo, B., Zhao, M., Zhang, C.: Nighttime low illumination image enhancement with single image using bright/dark channel prior. EURASIP J. Image Video Process. 2018(13), 1–15 (2018)

    Google Scholar 

  54. Lee, H., Sohn, K., Min, D.: Unsupervised low-light image enhancement using bright channel prior. IEEE Signal Process. Lett. 27, 251–255 (2020)

    Google Scholar 

  55. Salazar-Colores, S., Cabal-Yepez, E., Ramos-Arreguin, J.M., Botella, G., Ledesma-Carrillo, L.M., Ledesma, S.: A fast image dehazing algorithm using morphological reconstruction. IEEE Trans. Image Process. 28(5), 2357–2366 (2019)

    MathSciNet  Google Scholar 

  56. Simi, V.R., Edla, D.R., Joseph, J., Kuppili, V.: Analysis of controversies in the formulation and evaluation of restoration algorithms for MR images. Expert Syst. Appl. 135, 39–59 (2019). https://doi.org/10.1016/j.eswa.2019.06.003

    Article  Google Scholar 

  57. Kuppusamy, P.G., Joseph, J., Jayaraman, S.: A customized nonlocal restoration schemes with adaptive strength of smoothening for magnetic resonance images. Biomed. Signal Process. Control 49, 160–172 (2019). https://doi.org/10.1016/j.bspc.2018.12.012

    Article  Google Scholar 

  58. Joseph, J., Sivaraman, J., Periyasamy, R., Simi, V.R.: Noise based computation of decay control parameter in nonlocal means filter for MRI restoration. J. Med. Imaging Health Inform. 6(4), 1027–1037 (2016). https://doi.org/10.1166/jmihi.2016.1780

    Article  Google Scholar 

  59. Joseph, J., Sivaraman, J., Periyasamy, R., Simi, V.R.: An objective method to identify optimum clip-limit and histogram specification of contrast limited adaptive histogram equalization for MR images. Biocybern. Biomed. Eng. 37(3), 489–497 (2017). https://doi.org/10.1016/j.bbe.2016.11.006

    Article  Google Scholar 

  60. Joseph, J., Periyasamy, R.: An image driven bilateral filter with adaptive range and spatial parameters for denoising magnetic resonance images. Comput. Electr. Eng. 69, 782–795 (2018). https://doi.org/10.1016/j.compeleceng.2018.02.033

    Article  Google Scholar 

  61. Joseph, J., Periyasamy, R.: An analytical method for the adaptive computation of threshold of gradient modulus in 2D anisotropic diffusion filter. Biocybern. Biomed. Eng. 37(1), 1–10 (2017). https://doi.org/10.1016/j.bbe.2016.12.002

    Article  Google Scholar 

  62. Kumar, M., Mishra, S.K., Joseph, J., Jangir, S.K., Goyal, D.: Adaptive comprehensive particle swarm optimisation-based functional-link neural network filtre model for denoising ultrasound images. IET Image Proc. (2021). https://doi.org/10.1049/ipr2.12100

    Article  Google Scholar 

  63. Seddik, H.: A new family of Gaussian filters with adaptive lobe location and smoothing strength for efficient image restoration. EURASIP J. Adv. Signal Process. 2014(25), 1–11 (2014)

    Google Scholar 

  64. Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Madhavan, V., Darrell, T.: Bdd100k: a diverse driving dataset for heterogeneous multitask learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Nashville, United States, pp. 2636–2645 (2020).

  65. Caldwell, B., Cooper, M., Reid, L. G., Vanderheiden, G., Chisholm, W., Slatin, J., White, J.: Web content accessibility guidelines (WCAG) 2.0. WWW Consortium (W3C), 290 (2008)

  66. International Electrotechnical Commission: Colour measurement and management in multimedia systems and equipment-part 2–1: Default RGB colour space–sRGB. TEC 6, 1966 (1999)

    Google Scholar 

  67. Gu, K., Lin, W., Zhai, G., Yang, X., Zhang, W., Chen, C.W.: No-reference quality metric of contrast-distorted images based on information maximization. IEEE Trans. Cybern. 47(12), 4559–4565 (2017)

    Google Scholar 

  68. Gu, K., Tao, D., Qiao, J., Lin, W.: Learning a no-reference quality assessment model of enhanced images with big data. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1301–1313 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Institute of Technology Agartala, Tripura, India for providing a world-class research environment including research laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gouranga Mandal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, G., Bhattacharya, D. & De, P. Real-time automotive night-vision system for drivers to inhibit headlight glare of the oncoming vehicles and enhance road visibility. J Real-Time Image Proc 18, 2193–2209 (2021). https://doi.org/10.1007/s11554-021-01104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-021-01104-z

Keywords

Navigation