Skip to main content
Log in

Background subtraction in videos using LRMF and CWM algorithm

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Background subtraction is a substantially important video processing task that aims at separating the foreground from a video to make the post-processing tasks efficient and relatively easier. Until now, several different techniques have been proposed for this task, but most of them cannot perform well for the videos having variations in both the foreground and the background. In this paper, a novel background subtraction technique is proposed that aims at progressively fitting a particular subspace for the background that is obtained from \(L_1\)-low-rank matrix factorization using the cyclic weighted median algorithm and a certain distribution of a mixture of Gaussian of noise for the foreground. The expectation maximization algorithm is applied to optimize the Gaussian mixture model. Furthermore, to eliminate the camera jitter effects, the affine transformation operator is involved to align the successive frames. Finally, the effectiveness of the proposed method is augmented using a subsampling technique that can accelerate the proposed method to execute on an average more than 250 frames per second while maintaining good performance in terms of accuracy. The performance of the proposed method is compared with other state-of-the-art methods and it was concluded that the proposed method performs well in terms of F-measure and computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://www.changedetection.net/.

References

  1. Szwoch, G., Ellwart, D., Czyżewski, A.: Parallel implementation of background subtraction algorithms for real-time video processing on a supercomputer platform. J. Real-Time Image Proc. 11, 111–125 (2016)

    Article  Google Scholar 

  2. Erichson, N.B., Brunton, S.L., Kutz, J.N.: Compressed dynamic mode decomposition for background modeling. J. Real-Time Image Proc. 16, 1479–1492 (2019)

    Article  Google Scholar 

  3. Cocorullo, G., Corsonello, P., Frustaci, F., et al.: Multimodal background subtraction for high-performance embedded systems. J. Real-Time Image Proc. 16, 1407–1423 (2019)

    Article  Google Scholar 

  4. Sepúlveda, J., Velastin, S.A.: Evaluation of background subtraction algorithms using MuHAVi, a multicamera human action video dataset, vol. 12, no. 6 (2014)

  5. Beleznai, C., Fruhstuck, B., Bischof, H.: Multiple object tracking using local PCA. In: 18th International Conference on Pattern Recognition (ICPR’06), vol. 3, pp. 79–82. IEEE (2006)

  6. Cheung, S.C.S., Kamath, C.: Robust background subtraction with foreground validation for urban traffic video. EURASIP J. Adv. Signal Process. 14(726261), 2330–2340 (2005)

    MATH  Google Scholar 

  7. Senior, A.W., Tian, Y., Lu, M.: Interactive motion analysis for video surveillance and long term scene monitoring. In: Asian Conference on Computer Vision, pp. 164–174. Springer, Berlin, Heidelberg (2010)

  8. Cao, W., Wang, Y., Sun, J., Meng, D., Yang, C., Cichocki, A., Xu, Z.: A novel tensor robust PCA approach for background subtraction from compressive measurements. CoRR arXiv:abs/1503.01868 (2016)

  9. Wang, N., Yao, T., Wang, J., Yeung, D.Y.: A probabilistic approach to robust matrix factorization. In: European Conference on Computer Vision. Springer, Berlin, Heidelberg, pp. 126–139 (2012)

  10. He, J., Balzano, L., Szlam, A.: Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1568–1575. IEEE (2012)

  11. Xu, J., Ithapu, V.K., Mukherjee, L., Rehg, J.M., Singh, V.: GOSUS: Grassmannian online subspace updates with structured-sparsity. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3376–3383 (2013)

  12. Yong, H., Meng, D., Zuo, W., Zhang, L.: Robust online matrix factorization for dynamic background subtraction. IEEE Trans. Pattern Anal. Mach. Intell. 40(7), 1726–1740 (2018)

    Article  Google Scholar 

  13. Wang, X., Liu, L., Li, G., Dong, X., Zhao, P., Feng, X.: Background subtraction on depth videos with convolutional neural networks. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2018)

  14. Ratnayake, K., Amer, A.: Embedded architecture for noise-adaptive video object detection using parameter-compressed background modeling. J. Real-Time Image Proc. 13, 397–414 (2017)

    Article  Google Scholar 

  15. Jaiswal, D., Kumar, P.: Real-time implementation of moving object detection in UAV videos using GPUs. J. Real-Time Image Proc. 17, 1301–1317 (2020)

    Article  Google Scholar 

  16. Mabrouk, L., Huet, S., Houzet, D., et al.: Efficient adaptive load balancing approach for compressive background subtraction algorithm on heterogeneous CPU-GPU platforms. J. Real-Time Image Proc. 17, 1567–1583 (2020)

    Article  Google Scholar 

  17. Wang, B., Dudek, P.: A fasts-tuning background subtraction algorithm. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 395–398 (2014)

  18. Yadav, D.K. , Sharma, L., Bharti, S.K.: Moving object detection in real-time visual surveillance using background subtraction technique. In: 2014 14th International Conference on Hybrid Intelligent Systems, pp. 79–84. IEEE (2014)

  19. Boulmerka, A., Allili, M.S.: Background modeling in videos revisited using finite mixtures of generalized Gaussians and spatial information. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3660–3664. IEEE (2015)

  20. Ali, S.T., Goyal, K., Singhai, J.: Moving object detection using self-adaptive Gaussian mixture model for real time applications. In : 2017 International Conference on Recent Innovations in Signal processing and Embedded Systems (RISE), pp. 153–156. IEEE (2017)

  21. Javed, S., Ho Oh, S., Sobral, A., Bouwmans, T., Ki Jung, S.: Background subtraction via superpixel-based online matrix decomposition with structured foreground constraints. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 90–98 (2015)

  22. Feng, J., Xu, H., Yan, S.: Online robust PCA via stochastic optimization. In: Advances in Neural Information Processing Systems, pp. 404–412 (2013)

  23. Javed, S., Sobral, A., Bouwmans, T., Jung S.K.: OR-PCA with dynamic feature selection for robust background subtraction. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, pp. 86–91 (2015)

  24. Chen, R., Li, H.: Online algorithm for foreground detection based on incremental nonnegative matrix factorization. In: 2016 2nd International Conference on Control, Automation and Robotics (ICCAR), pp. 312–317. IEEE (2016)

  25. Javed, S., Mahmood, A., Bouwmans, T., Jung, S.K.: Spatiotemporal low-rank modeling for complex scene background initialization. IEEE Trans. Circuits Syst. Video Technol. 28(6), 1315–1329 (2016)

    Article  Google Scholar 

  26. Ebadi, S.E., Ones, V.G., Izquierdo, E.: Dynamic tree-structured sparse RPCA via column subset selection for background modeling and foreground detection. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3972–3976. IEEE (2016)

  27. Zeng, D., Zhu, M.: Background subtraction using multiscale fully convolutional network. IEEE Access 2018(6), 16010–16021 (2018)

    Article  Google Scholar 

  28. Wang, X., Liu, L., Li, G., Dong, X., Zhao, P., Feng, X.: Background subtraction on depth videos with convolutional neural networks. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2018)

  29. Wang, Y., Zhu, L., Yu, Z.: Foreground detection for infrared videos with multiscale 3-D fully convolutional network. IEEE Geosci. Remote Sens. Lett. 16(5), 712–716 (2019)

  30. Buchanan, A.M., Fitzgibbon, A.W.: Damped newton algorithms for matrix factorization with missing data. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005, vol. 2, pp. 316–322. IEEE (2005)

  31. Meng, D., De La Torre, F.: Robust matrix factorization with unknown noise. IEEE Int. Conf. Comput. Vis. 2013, 1337–1344 (2013)

    Google Scholar 

  32. Gillis, N., Glineur, F.: Low-rank matrix approximation with weights or missing data is NP-hard. SIAM J. Matrix Anal. Appl. 32(4), 1149–1165 (2011)

    Article  MathSciNet  Google Scholar 

  33. Eriksson, A., Van Den Hengel, A.: Efficient computation of robust low-rank matrix approximations in the presence of missing data using the L 1 norm. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 771–778. IEEE (2010)

  34. Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109(3), 475–494 (2001)

    Article  MathSciNet  Google Scholar 

  35. Brownrigg, D.R.K.: The weighted median filter. Commun. ACM 27(8), 807–818 (1984)

    Article  Google Scholar 

  36. Meng, D., Xu, Z., Zhang, L., Zhao, J.: A cyclic weighted median method for \(L_1\) low-rank matrix factorization with missing entries. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 27, no. 1 (2013)

  37. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM (JACM) 58(3), 1–37 (2011)

    Article  MathSciNet  Google Scholar 

  38. Cand‘Es, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)

    Article  MathSciNet  Google Scholar 

  39. He, J., Balzano, L., Szlam, A.: Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1568–1575. IEEE (2012)

  40. Zhou, X., Yang, C., Yu, W.: Moving object detection by detecting contiguous outliers in the low-rank representation. Pattern Anal. Mach. Intell. IEEE Trans. 35(3), 597–610 (2013)

    Article  Google Scholar 

  41. Wang, N., Yao, T., Wang, J., Yeung, D.Y.: A probabilistic approach to robust matrix factorization. In: European Conference on Computer Vision, pp. 126–139. Springer, Berlin, Heidelberg (2012)

  42. Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2233–2246 (2012)

    Article  Google Scholar 

  43. He, J., Zhang, D., Balzano, L., Tao, T.: Iterative Grassmannian optimization for robust image alignment. Image Vis. Comput. 32(10), 800–813 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to National University of Sciences and Technology, Islamabad, Pakistan for supporting this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Imran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munir, W., Siddiqui, A.M., Imran, M. et al. Background subtraction in videos using LRMF and CWM algorithm. J Real-Time Image Proc 18, 1195–1206 (2021). https://doi.org/10.1007/s11554-021-01120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-021-01120-z

Keywords

Navigation