
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2021) 18:2495–2510 
https://doi.org/10.1007/s11554-021-01138-3

ORIGINAL RESEARCH PAPER

Low‑energy motion estimation memory system with dynamic 
management

Dieison Soares Silveira1   · Lívia Amaral2 · Guilherme Povala2 · Bruno Zatt2 · Luciano Volcan Agostini2 · 
Marcelo Schiavon Porto2 · Sergio Bampi3

Received: 20 January 2021 / Accepted: 29 May 2021 / Published online: 11 June 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The digital video coding process imposes severe pressure on memory traffic, leading to considerable power consumption 
related to frequent DRAM accesses. External off-chip memory demand needs to be minimized by clever architecture/
algorithm co-design, thus saving energy and extending battery lifetime during video encoding. To exploit temporal 
redundancies among neighboring frames, the motion estimation (ME) algorithm searches for good matching between 
the current block and blocks within reference frames stored in external memory. To save energy during ME, this work 
performs memory accesses distribution analysis of the test zone search (TZS) ME algorithm and, based on this analysis, 
proposes both a multi-sector scratchpad memory design and dynamic management for the TZS memory access. Our 
dynamic memory management, called neighbor management, reduces both static consumption—by employing sector-
level power gating—and dynamic consumption—by reducing the number of accesses for ME execution. Additionally, 
our dynamic management was integrated with two previously proposed solutions: a hardware reference frame compressor 
and the Level C data reuse scheme (using a scratchpad memory). This system achieves a memory energy consumption 
savings of 99.8% and, when compared to the baseline solution composed of a reference frame compressor and data reuse 
scheme, the memory energy consumption was reduced by 44.1% at a cost of just 0.35% loss in coding efficiency, on 
average. When compared with related works, our system presents better memory bandwidth/energy savings and coding 
efficiency results.

Keywords  Video coding · Motion estimation · Test zone search · Dynamic memory management · Energy optimization

1  Introduction

Recent hardware technology advances have strong impacts 
in the IT market, where consumer electronics gadgets 
are short-lived. Digital devices, such as smartphones, 

cameras, and tablets, are released and soon surpassed by 
new increasingly powerful devices able to perform a larger 
number of tasks. This evolution brought higher quality 
and diversification to multimedia services, such as audio/
video quality and the ability to easily record and transmit 
multimedia content, among others.

To quantify this trend, a forecast by Cisco shows that 
the internet video traffic will grow fourfold from 2017 to 
2022, accounting for 82% of total internet traffic by the 
end of the forecast period [1]. Furthermore, with the unex-
pected COVID-19 pandemic, the internet traffic increased 
in all regions, mainly from streaming video and videocon-
ferencing traffic [2]. Moreover, battery-powered devices 
are ever more ubiquitous, especially the ones that handle 
digital videos such as smartphones. These devices will 
account for 44% of total IP traffic in 2022, up from 18% 
in 2017 [1], which is relevant given the limited memory 
and energy availability in mobile devices. In turn, digital 
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video content has also become omnipresent. By 2022, a 
million minutes of video content will cross the network 
every second [1]. To satisfy users’ demand and allow them 
to capture and to store videos, mobile devices must be able 
to handle quality videos and ever-increasing resolutions. 
However, when dealing with battery-powered devices, 
serious battery-related restrictions must be considered. To 
prolong the battery lifetime of battery-powered devices, 
the reduction of memory related energy consumption 
becomes an essential task [3].

In this context, video coding is a key enabling technol-
ogy. Without compression, videos would require a prohibi-
tive data usage to be represented, stored, and, eventually, 
transmitted. Video encoders incorporate many encoding 
tools that are constantly in development. With these tools, 
digital videos are represented with much smaller volume 
of data at the cost of heavy processing and some controlled 
losses in visual quality.

The evolution in the encoding tools generated different 
video coding standards, such as the high-efficiency video 
coding (HEVC) [4]. HEVC introduces plenty of innova-
tions to video processing, such as new coding structures, 
larger prediction units, variable size transforms, and fea-
tures to enhance parallel processing capability [5]. Thus, 
HEVC promoted 50% bitrate reduction for similar objec-
tive video quality in comparison to its ancestor, the H.264/
AVC [6].

However, the new tools implemented in HEVC pro-
moted a significant increase in computational effort of the 
encoder ranging from 9 to 502% , depending on the HEVC 
configurations and the used HEVC Test Model (HM) [7]. 
Besides, the volume of data accessed in memory is more 
than twice as high as required in H.264/AVC [6], which 
leads to more complex hardware designs. The tool that 
most contributes to this heavy load is the ME since the ME 
process takes around 80% of the total encoding time and 
50% of the total HEVC encoder energy consumption [8, 9], 
even using a fast algorithm as TZS [10]. Besides, approxi-
mately 65% of the HEVC encoder memory accesses are 
made by the ME [11].

ME demands intense memory communication, which 
leads to high energy consumption in video coding sys-
tems. As a result, about 70–90% of ME energy consump-
tion is spent on accessing internal and external memories 
[12, 13]. As memory communication significantly affects 
energy consumption and performance, this is a major bot-
tleneck in a video coding system. Hence, reducing mem-
ory energy consumption is mandatory for energy-efficient 
high-performance video encoders.

1.1 � Novel contributions

This work proposes a dynamic memory management 
system to better explore the relationship between coding 
efficiency and energy consumption when processing the 
ME. This system consists of a SRAM-based scratchpad 
memory (SPM), which allows power gating at the sec-
tor level. This memory is used to store two search areas 
(SA) of neighbor blocks using a Level C data reuse strat-
egy [14], allowing data reuse among these two neighbor 
blocks. The system also includes the double differential 
reference frame compressor (DDRFC) [15], which was 
developed in our group. The proposed system reduces the 
communication with external DRAM memory when ME is 
requesting data from reference frames, reducing the energy 
required to perform the ME.

The proposed memory manager turns off SRAM mem-
ory sectors when the accesses made to them become irrel-
evant to the TZS. The inactive memory sectors reduce 
the static energy consumption in the internal memory 
proportionally with the number of powered off SRAM 
cells. A reduction in the dynamic energy consumption was 
also achieved since inactive memory sectors imply fewer 
blocks available for access during the TZS process. Data 
unavailable in memory will not be delivered to the TZS, 
even if requested, reducing memory access. The main con-
tributions of this article are summarized as follows: 

1.	 A statistical analysis of the TZS memory accesses, 
which allows better understanding of the TZS behav-
ior within the SA and the definition of the most/least 
accessed regions.

2.	 A multi-sector scratchpad memory design that employs 
power gating at the sector level to reduce the static 
energy consumption of the internal memory.

3.	 A dynamic management algorithm, which is able to 
dynamically control the ME process according to the 
number of memory accesses required by the TZS.

4.	 A memory system for the ME that combines reference 
frame compression, Level C data reuse, and dynamic 
management, to reach high memory bandwidth/energy 
reduction.

The rest of this article is organized as follows: Sect. 2 pre-
sents related works; Sect. 3 presents the TZS algorithm; 
Sect.  4 explains in detail the TZS statistical analysis, 
the proposed dynamic management system, the memory 
access behavior of the TZS, and the multi-sector SPM 
design proposed. Section 5 presents the energy consump-
tion model developed to calculate the energy consumption 
savings by the proposed system. The energy consumption 
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and coding efficiency results are shown in Sect. 6, then 
conclusions are presented in Sect. 7.

2 � Related works

The approaches most often used to reduce external mem-
ory accesses in video encoders are: (1) reference frames 
compression; (2) data reuse; and (3) dynamic control of 
search range for the block matching during ME. In the fol-
lowing subsections, related works with these approaches 
are briefly reviewed.

2.1 � Reference frame compression

This approach consists of two phases: (1) compression 
of the reference frame blocks before they are stored in 
the external memory; and (2) decoding process of previ-
ously compressed blocks, since they will be used as future 
references during the coding process. Lossy or lossless 
algorithms can be herein employed.

Lossy compression approaches generally achieve higher 
compression ratio than lossless solutions, since they use 
quantization in the compression algorithm. However, loss-
less solutions preserve the video quality, but they insert 
non negligible computational cost by employing various 
combined techniques to perform the compression, which 
leads to increased power dissipation and latency.

In works presented by Lian et al. [16] and Willeme 
et al. [17], lossy reference frame compression schemes 
are proposed. In these works the authors use techniques 
such as quantization, differential coding, variable length 
coding, and transforms to compress the reference frame. 
Whereas, in works presented by Lee et al. [18], Lian et al. 
[19] and Silveira et al. [15] the authors proposed lossless 
reference frame compression approaches, which maintain 
the video quality.

2.2 � Data reuse

Data reuse schemes reach significant memory bandwidth 
reduction when the memory accesses are sequential. The 
data are brought in a specific order from the external mem-
ory to the internal memory (SRAM cache), reducing the 
access latency and external memory bus contention, all 
leading to less memory bandwidth required.

The work proposed by Tuan et al. in [14] presents the 
Level C data reuse scheme, which explores the global 
locality in the search area strip among different search 
areas. This way, Level C works as follows: an entire SA is 
used in internal memory for coding a given block N. After 
block N is coded, its neighboring block N + 1 will also 

be coded. As both blocks share the main part of the SAs, 
the overlapped area will not be removed from memory. 
However, areas that only correspond to the SA of block N 
will be replaced by information pertaining only to the SA 
of block N + 1 . By bringing only the different informa-
tion, there is an important reduction in redundant memory 
access. Level C will be detailed in Sect. 3.

In [20], a reuse scheme based on overlapped SAs among 
neighboring current blocks is used. This work proposes a 
zigzag scan called Level C+. This scheme requires spe-
cial coding orders, which is not convenient for hardware 
implementation since the control complexity is increased. 
However, Level C data reuse is a hardware-friendly solu-
tion, which achieves a large reduction in external memory 
bandwidth requirement and is widely employed in video 
encoder architectures.

2.3 � Dynamic search range

Dynamic search range schemes employ dynamic SA 
adjustment algorithms. The adjustment is usually per-
formed based on the sizes of the motion vectors found for 
the previous frame.

Dai et al. [21] propose the use of Cauchy distribution 
to improve the effectiveness in predicting the distribution 
of the motion vectors sizes in the frame being encoded. In 
Du et al. [22] and Chien et al. [23], the authors propose an 
adaptive search range algorithm that, considers the predic-
tion unit (PU) [5] motion. The relationship between the 
motion vector predictor, the difference between PUs, and 
the SA size are considered by Li et al. [24].

Ji et al. [25] modeled a deviation metric of the motion 
vector predictor to predict the relationship between the 
size of the SA and the difference of the motion vector. 
In Pakdaman et al. [26] and Singh et al. [27] the authors 
propose a new fast ME algorithm to reduce the number of 
search points in the ME process.

The aforementioned works did not present evaluations 
that focus on the number and location of accesses within 
the SA when a fast algorithm is used. Furthermore, there 
is a need for a memory system able to integrate the three 
discussed approaches to improve energy savings, mainly 
considering fast search algorithms.

3 � Motion estimation and the TZS algorithm

ME is present in all major video coding standards and 
its goal is to reduce the temporal redundancies among 
neighbor frames [5]. For each block of the current frame, 
the ME searches for a block (in previously encoded refer-
ence frames) that presents the highest similarity with the 
current frame block [5]. The displacement between the 
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best-matching block and the current block is represented 
by a motion vector.

Considering the HEVC standard, the frame being 
encoded is divided into blocks called coding tree units 
(CTU) [5]. The ME search is performed within a SA in 
order to reduce the ME computation cost. The size of the 
SA considers the block size and the search range (SR) 
size. The SR defines the maximum horizontal and verti-
cal distances (in relation to the current block position) 
the search is allowed. These distances are measured in 
samples. Equation (1) defines the SA size, where BSh and 
BSv are the block horizontal and vertical sizes and SRh and 
SRv indicate the horizontal and vertical SRs.

One of the most efficient ME algorithms proposed in the 
literature is the TZS algorithm [10]. This algorithm divides 
the search process into four steps: motion vector prediction, 
first search, raster search, and refinement. With this strategy 
the TZS reaches results close to the optimum, but without 
the prohibitive cost of an exhaustive search done by the Full 
Search algorithm [28]. TZS is the current state-of-the-art 
ME algorithm and compliant with any video encoder stand-
ard. The TZS is adopted as default by the HEVC reference 
software [29]. Since the TZS is the focus of this work, this 
section will detail the four steps that compose the algorithm.

The first step of TZS consists of the motion vector pre-
diction (MVP) phase. This step is responsible for relocat-
ing the SA to the most promising location in the frame, 
based on previously encoded blocks [10]. While the MVP 
step contributes to decrease coding time, the fact that the 
SA may not be always formed around the collocated block 
hinders hardware implementations and the use of efficient 
data reuse strategies [30].

The First Search is the second step of the TZS algo-
rithm. It starts at the center of the SA defined by the MVP 
and expands toward the edges of the SA using a square 
or diamond format [10]. The expansion step increases in 
power of two. The First Search has two stopping criteria. 
The first is when it reaches the border of the SA. The sec-
ond limits the number of consecutive expansions (typically 
three expansions) unable to return a better result.

If none of the compared points of the three first expan-
sions has a better result than the central block, the First 
Search stops and returns block 0 as a best-match result. 
Since the three next expansions did not return a better 
result and the fourth expansion reached the border of the 
SA, the First Search finishes the search and returns the 
block as the best one.

The third TZS step is the Raster Search. However, the 
Raster Search only occurs when the motion vector from 
the First Search is greater than the iRaster constant, which 

(1)SA = (2SRh + BSh) × (2SRv + BSv)

has a value 5 by default [10]. When executed, the Ras-
ter Search applies a block subsampled Full Search scan 
throughout the SA, returning the best-matching block 
found. The iRaster constant also defines the horizontal and 
vertical block subsampling. Then, by default, only one at 
each five horizontal and five vertical blocks are compared. 
Even with this subsampling, this is the most computation-
ally intensive TZS step [10].

Finally, the fourth and last step is refinement. The 
refinement takes the best-matching block, from either 
the First Search or the Raster Search (when performed), 
and executes the same pattern of First Search. However, 
while the First Search starts in the center and goes for the 
edges of the SA, the refinement always updates its center 
with the best result found in its last iteration. The Refine-
ment step has two stop conditions: (1) when the expansion 
reaches the edge of the SA, and (2) when no block more 
similar than the one being encoded is found after a two-
level expansion [10].

The use of fast algorithms such as TZS and SA smaller 
than the complete frame reduce the computational cost to 
perform the ME. However, HEVC uses tools that lead to 
better coding results at the cost of a significant increase in 
memory accesses and complexity [31].

Therefore, all efficient ME architectures use some form 
of data reuse. Several repetitive accesses are made to the 
exact pixel locations in advanced video coding standards 
due to excessive block matching operations.

In this sense, Level C data reuse is one of the most 
used in ME architectures and presents a hardware-friendly 
implementation, providing a high memory bandwidth 
reduction rate. Level C data reuse explores the data local-
ity in the SA strip across neighboring SAs.

Figure  1 illustrates the Level C data reuse process 
between two SA. In this figure, SR means search range 
and N is the size of the block. The gray area represents 
the reused area between two SA. Equation (2) shows the 
amount of samples reused for each new SA when Level 
C is used.

Fig. 1   Level C data reuse process, which explores the global locality 
between SA 0 and SA 1
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To quantify the ME external memory bandwidth Eq. (3) 
can be used. In this equation, the external memory band-
width (MemB) using Level C is considered. In Eq. (3), FS 
is the frame size and W and H are the width and height of 
the frame and block, respectively.

As one can notice in Eq. (3), the factors that most impact 
external memory bandwidth are the frame size, the num-
ber of reference frames (RF), the frame rate per second 
(FPS), and the block size (BS). The block size determines 
the amount of SA that will be brought from the external 
memory.

Thus, the encoder design must consider that a major 
bottleneck lies in the communication between external 
memory and processing units. Therefore, there is a strong 
need for techniques to reduce external memory communi-
cation, especially during the ME process.

4 � Proposed ME memory system 
with dynamic management

This section presents the analysis and the development 
of the proposed low-energy TZS memory system with 
dynamic management. The system proposed in this article 
employs three strategies to reduce the external memory 
accesses and energy consumption. These strategies are: 

(2)LevelCSamplesReused = (SRv + N − 1) × (SRh − 1)

(3)

MemB =RF × FPS ×
FSH

BSSH
×

(

SAW × SAH +

(

FSW

BSW
− 1

)

× BSW × SAH

)

(1) the DDRFC reference frame compressor; (2) the Level 
C data reuse scheme, and (3) a dynamic control to power 
gate memory sectors. These three solutions are explored 
together to reduce the TZS energy consumption with low 
coding efficiency loss. This system is described in Fig. 2.

As one can notice in Fig. 2, the DDRFC operates in 
both read and write operations in the external memory. 
This approach consists of two phases: compression of the 
reference frame blocks before they are stored in the exter-
nal memory; and decompression of the previously com-
pressed blocks, since they will be used as future references 
during the coding process. The DDRFC was presented in 
our previous work and performs intra-block double dif-
ferential coding over 8 × 8 sample blocks followed by a 
static Huffman coding [15]. The DDRFC is a lossless 
reference frame compressor and guarantees block-level 
random access by avoiding data dependencies between 
neighboring blocks.

The Level C data reuse scheme was implemented in a 
SPM SRAM memory. The SPM was implemented as a cir-
cular buffer where the beginning of the SA is indicated by 
a flag. This allows the Level C to avoid unnecessary write 
operations every time a SA shift occurs. Furthermore, the 
memory banks of the SPM can be power gated using a 
single sleep-state transistor [32]. The dynamic manage-
ment module controls the power gating and the flag offset 
along the memory banks.

The dynamic management module developed in this 
work uses information from the neighboring CTUs to 
define if a sector can be turned off or on. The dynamic 
management intends to find the best relation between 
energy consumption and video coding efficiency.

The following sections will describe the dynamic 
management memory system proposed in this work. Sec-
tion 4.1 presents a statistical analysis that motivated the 
dynamic management development. In Sect. 4.2 the details 
of the scratchpad memory design are shown. In Sect. 4.3 
the dynamic management strategy of TZS SPM will be 
discussed.

4.1 � TZS experimental analysis

To support the design of our memory hierarchy, an analy-
sis of the samples accessed by TZS inside the SA was done 
through experiments using the HEVC reference software, 
the HM version 16.6 [29]. The first 100 frames from six 
HD 1080p test sequences were used to quantify the num-
ber of times each sample is required within the SA. These 
video sequences were recommended by the HEVC com-
mon test conditions (CTCs) [33] and are called Basketball 
Drive, BQTerrace, Cactus, Kimono, ParkScene and Tennis. 
These sequences were encoded with the four quantization 
parameters (QP) defined by the CTCs: 22, 27, 32 and 37. 

Fig. 2   The evaluated dynamic management system integrated with 
the video encoding unit, with an external memory and connected by 
the reference frame compressor
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The low delay P configuration was adopted, since this con-
figuration is the one recommended by the HEVC CTCs.

As the proposed dynamic controller focuses only on the 
TZS stage, this module was isolated in the HM software 
to better evaluate the impact of the dynamic control. This 
way, the early skip [5] and the occurrence of intra blocks 
in inter frames [5] were disabled. Besides, the support to 
bi-directional prediction [5] was disabled and the search 
was limited to one reference frame.

The TZS has five MVP predictors to select the SA posi-
tion in the reference frame: one based on the collocated 
block and four predictors based on neighboring blocks. 
By applying predictors based on neighboring blocks, TZS 
can move the SA to a distant region from the collocated 
block position, hinders a predictive behavior of the exter-
nal memory accesses, and generates irregular access to the 
external memory. These two consequences of the MVP use 
limit efficient memory management schemes in hardware, 
increasing the energy consumption and limiting the ME 
throughput [27].

This way, to achieve a better trade-off between the per-
formance and hardware cost, only the prediction based 
on the collocated block was maintained in TZS for all 
evaluations. This approach is also adopted by other hard-
ware solutions proposed in the literature. As presented 
by [27], the consequence of not using all five MVP pre-
dictors is 0.25% in BD-rate. Then, the SA was defined 
around the collocated block inside the reference frame. 
Besides, a CTU of size 64 × 64 samples was defined. A 
SR with [−64,+64] samples were assumed, totaling a SA 
of 192 × 192 samples, according to Eq. (1). This SR is the 
HM default value. Finally, the HM 16.6 [29] was modified 
to obtain the information required for this evaluation into a 
trace file. Given that non-square blocks are less frequently 
used than square blocks [5], non-square blocks were disa-
bled in the ME process for these experiments.

Figure 3 shows histograms of the number of accesses 
made to each sample within the SA considering two corner 

case video sequences (BQTerrace and Tennis sequences in 
Fig. 3a,b, respectively), considering the average of the four 
QPs of each video. Moreover, Fig. 3 shows the histogram 
of the average accesses for the six videos.

As one can notice in Fig. 3, the most accessed region 
in the SA is the central one, from where the expansion 
of TZS starts during the First Search. This happened for 
all video sequences. However, videos with features such 
as high motion or texture, such as the Basketball Drive, 
Kimono and Tennis (Fig. 3b), presented more accesses 
closer to the edge of the SA than videos that have low 
motion or texture, where the accesses are more concen-
trated in the central region.

These histograms reassure that the occurrence of most 
accesses is in the small central region of the SA, i.e., 
peripheral parts of the SA receive few accesses. From 
the average of accesses generated for each video, it was 
possible to obtain a relation between number of accesses 
and the proportion of the used area within the SA. This 
relation is shown in Fig. 4. It shows that 50% of the most 
accessed samples within the SA lie in a region that cor-
responds to only 15.81% of its total size. Furthermore, 95% 
of the accesses are carried out in a region corresponding to 
66.65% of the SA. The relation expressed in this graph is 
important since it motivates a multi-sector memory design 

Fig. 3   Histogram of TZS memory accesses: a BQTerrace histogram 
shows the highest central region accesses; b Tennis histogram pre-
sents the lowest central region accesses. c, d present different points 

of view for the histogram with the average TZS memory accesses for 
the six videos evaluated

Fig. 4   Relation between most accessed data and used region within 
the SA
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and the dynamic memory management developed in this 
work.

4.2 � Multi‑sector scratchpad memory design

To build the proposed SPM with dynamic control, the 
original SA was divided in sectors. Initially, several 
sizes and number of sectors were investigated and the 
approach employing three sectors showed the best cod-
ing efficiency results: � (central), � (intermediate), and � 
(border). The division of the SA into these three sectors 
is presented in Fig. 5. In this figure, each of the 24 × 24 
positions represents a block of 8 × 8 samples, totaling a 
SA of 192 × 192 samples. The sector division was made 
considering the information obtained from the evaluation 
presented in the previous section and presented in Figs. 3 

and 4. The sectors � and � represent the same area size of 
a SR [−32,+32] . However, due to the diamond shape of 
sectors � and � , this arrangement achieves better quality 
and coding efficiency results than the square area of the 
SR [−32,+32].

The next step was a statistical evaluation to obtain the 
list of memory accesses by sector when running the TZS. 
This evaluation was done encoding the same six videos 
used in the previous section, with QP 32. In Fig. 5, Sector 
� has the smallest slice, which corresponds to 17.89% of 
the SA size. Sector � , constitutes a region with 48.78% of 
the SA. Finally, sector � , represents an area of 33.33% of 
the SA. The list of accesses by sector is shown in Table 1, 
where the results are presented for six video sequences, 
as well as the average and the standard deviation. In this 
table, one can notice that most accesses for all videos is 
made in sector � , from where the search of TZS starts dur-
ing the First Search phase. This result is even more evident 
for low movement or texture videos where more than 80% 
of accesses were made in this sector.

High motion videos had about 50% of average accesses 
in sector � and about 40% in sector � . Sector � was the 
one with the lowest number of accesses. In slow motion 
videos, the number of accesses in this sector was lower 
than 3% and for high motion videos, this number did not 
reach 10%.

Given that sector � has 33.33% of the SA samples and 
that it has a very low rate of accesses ( 5.5% on average), 
the first optimization presented in this work was to remove 
sector � from the SA. The decrease in the SA size allowed 
the reduction of the SPM size, from 576 8 × 8 sample 
blocks as shown in Fig. 5, to 384 8 × 8 sample blocks. The 
coding efficiency impacts of this design decision will be 
discussed later in this article.

Then, just two sectors were used in this work: � and 
� . Sector � is always active, and sector � can be power-
gated according to the developed dynamic control. The 
SPM design allows a sector-level memory control, using 
the power gating in groups of cells corresponding to a 
specific sector. This allows a static energy consumption 
reduction, resulting from the SRAM cells’ shutdown and 

Fig. 5   Search area divided in three sectors, where sector � has 103 
blocks, sector � has 281 blocks and sector � has 192 blocks

Table 1   Average results of the TZS memory accesses by sector

Video Sector � (%) Sector � (%) Sector � (%)

SA percentage 17.89 48.78 33.33
BasketballDrive 50.84 39.23 9.93
BQTerrace 84.55 13.34 2.10
Cactus 84.23 13.47 2.30
Kimono 57.78 35.41 6.80
ParkScene 85.14 12.51 2.36
Tennis 48.87 41.61 9.53
Average 68.57 25.93 5.50
Std. Dev. 17.86 12.95 3.72 Fig. 6   Design of the multi-sector SPM architecture composed of 384 

memory banks with 64 bytes each.
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a dynamic energy consumption reduction, with a reduc-
tion in the number of samples compared during the coding 
process. However, an efficient control must be developed 
to achieve a good relationship between energy consump-
tion reduction and coding efficiency. For this, different 
strategies for dynamic memory management are addressed 
in the next section.

Figure 6 presents the architecture design of the pro-
posed multi-level SPM. The SPM contains 384 memory 
banks, where each bank can store one 8 × 8 sample block. 
The memory banks are composed of 16 rows and 32 col-
umns, reaching 64 bytes of capacity each bank. The SPM 
can store two sectors, � and � . When just sector � is turned 
on, only 103 memory banks are necessary.

On the other hand, both sectors are turned on, and all 
the 384 memory banks are used. All memory banks can 
be power gated by the sleep-state transistors (ST), which 
are used as switches to shut off power supplies to memory 
banks [32]. When the memory banks corresponding to the 
sector � are turned off, the stored data are lost since this 
data will no longer be necessary. However, only memory 
blocks that will not be used by the next SA are turned off, 
blocks that will compose the next SA remain turned on 
into the SPM.

In addition, with each new SA change, new data will 
be brought from the external memory to the SPM. How-
ever, only data from the region that is not overlapped with 
the region already stored in the SPM is brought, avoiding 
bringing the same data back to the internal memory. This 
occurs with both sectors � and � , but if the new SA has 
sector � turned on, all the memory banks of the SPM will 
be turned on.

Furthermore, the SPM presented in Fig. 6 operates as 
a circular buffer. When a new block is being coded, the 
flag indicates the memory bank with the beginning of the 
new corresponding SA. Besides, common SA blocks from 
both sectors � and � are maintained, if sector � was used, 
and new blocks are read from the external memory. Thus, 
the Level C scheme works optimally, avoiding unneces-
sary writing operations each time a SA shift occurs. The 
dynamic management module controls both power gating 
and flag offset along the memory banks. Besides, the SPM 
receives data from the DDRFC decoder, stores them into 
the cells, and sends them to the TZS ME under request.

4.3 � Developed neighbor management SPM control

In this section, the dynamic management strategy of TZS 
SPM memory will be discussed. The memory control pro-
posed in this work intends to find the best relation between 
energy consumption savings and coding efficiency losses. 
Thus, the system evaluated in this section has a memory 

with dynamic management, aiming to activate or deacti-
vate sector � when convenient.

The decisions are done using an auxiliary binary matrix 
that represents the requests of each CTU inside a frame 
to access sector � . In an HD 1080p video, the auxiliary 
matrix will have 510 positions, since each frame with this 
resolution has 17 rows and 30 columns of 64 × 64 CTUs. 
Each position in the auxiliary matrix is updated after 
TZS encodes each CTU. Thus, a position in the matrix 
may receive the value “1” when the corresponding CTU 
requests the activation of sector � or the value “0” other-
wise. The auxiliary matrix is updated at each processed 
CTU and it will be used to encode the next CTU. All CTUs 
of the first frame will be encoded considering that the sec-
tor � is active.

The TZS dynamic management strategy developed in 
this work is called Neighbors management (NM). The NM 
consults the auxiliary matrix for each CTU being encoded. 
If the collocated CTU requests sector � , the CTU being 
encoded will have sector � active during its encoding. A 
second criterion was also defined: if most of the eight 
neighboring positions have the current CTU request sec-
tor � active, this CTU will have sector � enabled during 
its coding.

As the auxiliary matrix is always updated after encod-
ing the current CTU, management based on neighbors con-
siders neighboring CTUs that have already been encoded 
in the current frame (frame N) and CTUs encoded in the 
previous frame (frame N − 1).

Figure 7 presents an example of how the decision to 
activate or not sector � is made in NM. In this figure, the 
gray color indicates CTUs already encoded in the current 
frame, the white color indicates CTUs that have not yet 
been encoded in the current frame but have been encoded 
in the previous frame. The blue color indicates the current 
CTU being encoded. In this example, even that the collo-
cated CTU is not requesting the use of sector � (position 
with “0” in the auxiliary matrix presented in Fig. 7a), five 
of the eight neighbors of the current CTUs are requesting 
sector � (as presented in Fig. 7a), then, sector � will be 
active to encode this CTU (as presented in Fig. 7b). Only 

Fig. 7   Illustration of the NM solution: a auxiliary matrix and b acti-
vated sectors
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after encoding the current CTU, the auxiliary matrix in the 
corresponding position will be updated.

5 � Energy consumption model

This section presents the energy consumption model 
developed to calculate the total energy consumption sav-
ings resulting from the dynamic management system. The 
energy consumption model used in this work follows the 
model presented by Amaral et al. [34]. This model can cal-
culate the total energy consumption of the video encoding 
systems with different configurations, such as data reuse 
strategies, memory hierarchies, and reference frame com-
pressors. The input of this model is the TZS algorithm 
trace, with detailed information of all blocks requested 
during TZS execution. The model output consists of the 
energy consumption of the evaluated solutions. The sys-
tem addressed in this work and evaluated by this model 
involved the joint use of the DDRFC [15], Level C data 
reuse, and the dynamic TZS controller, as presented in 
Fig. 2 and previously discussed.

As this work proposes a TZS dynamic management 
from an internal memory that allows power gating at the 
sector level, the monitoring of the static consumption of 
this memory becomes relevant. This is because, by turning 
off memory sectors, energy savings in the static energy 
consumption of internal memory are obtained. To quantify 
this savings, the energy consumption model calculates the 
static energy consumption over the cycles required to code 
each CTU.

This work considers that the processing core of the TZS 
hardware will receive 512 bytes per clock cycle as input 
and will operate at 100 MHz using as reference a previous 
TZS architecture designed in our research group [30]. This 
target frequency is sufficient to process 4K videos at 30 
frames per s. It is important to note that when the sector 
� is turned on or off, the frame rate of the system remains 
the same. This way, only energy consumption will change. 
The number of cycles required to process a block follows 
Eq. (4), where: (1) TB refers to the block size, (2) nLines 
is the number of lines in the block, and (3) nCand is the 
number of blocks compared by TZS.

Thus, the internal memory was designed to receive and 
deliver 64 bytes ( 8 × 8 sample blocks) per cycle and to oper-
ate at a frequency of 800 MHz, establishing the input of 
the adopted TZS hardware. With this frequency the system 
guarantees a processing rate enough for encoding 4K videos 
at 30 frames per s. This input size also matches the granu-
larity of the DDRFC. Moreover, 8 × 8-sample block is the 

(4)Cycles = 1 + log2 TB + nLines + log2 nCand

smallest square block size used in HEVC TZS. Higher TZS 
block sizes are divided in 8 × 8 samples to be processed by 
the DDRFC.

The calculation of static energy consumption considers 
the number of cycles required to process each CTU and 
also, the processing time in which the requested sector 
was active in the internal memory. Equation (5) shows 
the calculation performed to obtain the total static energy 
consumption of the internal memory, obtained from the 
sum of the static energy consumption of each sector. In 
this equation: (1) CT refers to the cycle time of the TZS 
hardware, (2) SEC represents the static energy consump-
tion of the number of SRAM cells active in memory and 
(3) n is the maximum number of sectors that can be acti-
vated in memory.

The following equations are used to calculate the dynamic 
energy consumption. The energy consumption (EC) related 
to the DRAM memory for reading (Re) and writing (Wr) 
operations for a number of words (D) when data reuse 
scheme is not considered, is defined as:

In Eqs. (6) and (7), E is the energy cost for an operation 
(read/write) in a specific memory. AlgorithmTZS is the TZS 
algorithm used by the ME. Frame is the size of the frame 
(e.g., 1920 × 1080 pixels). The total EC, when data reuse 
scheme is not considered, is the sum of Eqs. (6) and (7), as 
in Eq. (8):

The EC pertinent to the DRAM and SRAM memories for 
reading and writing operations when only data reused (DR) 
is considered is defined in Eqs. (9)–(11). In these equations, 
LevelC is the Level C data reuse. The total EC considering 
the use of a data reuse scheme is summarized in Eq. (12).

(5)Staticconsumption =

i<n
∑

i=0

(CT × Cycles
i
× SEC

i
)

(6)ECDram/TRe = E(DRAMRe) × D(AlgorithmTZS)

(7)ECDram/TWr = E(DRAMWr) × D(Frame)

(8)ECDram = ECDram/TRe + ECDram/TWr

(9)ECDramRe
=E(DRAMRe) × D(LevelC)

(10)ECSramWr
=E(SRAMWr) × D(LevelC)

(11)ECSramRe
=E(SRAMRe) × D(AlgorithmTZS)

(12)
ECDR =ECDramRe

+ ECSramWr

+ ECSramRe
+ ECDram/TWr
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The EC related to the read operations for the complete solu-
tion including reference frame compressor and data reuse 
scheme, is defined by Eqs. (13) and (14). For write opera-
tions the EC is defined in Eqs. (15)–(17). Total EC of this 
scheme is obtained by Eq. (18).

In these equations, FrameCod represents a frame encoded 
by the reference frame encoder. RFCEnc and RFCDec repre-
sent the reference frame encoder and decoder energy from a 
reference frame coding.

6 � Results and comparison with related 
works

This section presents the energy consumption and the 
coding efficiency results for the memory-aware dynamic 
control proposed in this work. Moreover, we compare the 
NM dynamic control strategy proposed in Sect. 4.3 against 
two static schemes called Static Sector Outer (SSO), where 
booth sectors � and � are always turned on, and Static 
Sector Inner (SSI), where only the sector � is turned on. 
Since NM strategy dynamically defines when sector � will 
be turned on or turned off, it is expected that the dynamic 
strategy will reach an energy consumption better than SSO 
and a coding efficiency better than SSI.

In the analysis of the TZS algorithm six HD 1080 
video sequences were used. To validate the solution, new 
sequences were used together with the sequences used for 
the evaluation analysis. A new set of HD 1080p resolution 
video sequences were used and also a set of ultra-high 
definition (UHD) 2160p ( 4096 × 2160 and 3840 × 2160 
pixels) videos were used. The set of UHD videos used 
in this section comprises videos of classes A1 and A2 of 
the Common Test Conditions (CTCs) [35]. These videos 
are: Campfire, Drums, Tango, ToddlerFountain, CatRo-
bot, DaylightRoad, RollerCoaster and TrafficFlow. The 

(13)ECDram∕CRe
=E(DRAMRe) × D(RFCDec)

(14)ECRFCDec
=E(RFCDec) × D(LevelC)

(15)ECRFC
Enc

=E(RFCEnc) × D(Frame)

(16)ECCWr
=E(DRAMWr) × D(FrameCod)

(17)ECDram∕CWr
=ECRFCEnc

+ ECCWr

(18)
ECsystem =ECDram∕CRe

+ ECRFCDec

+ ECSramWr
+ ECSramRe

+ ECDram∕CWr

additional 1080p sequences used were BlueSky, InToTree, 
PedestrianArea, RushHour, Sunflower and Tractor.

6.1 � NM energy consumption reduction

To generate the energy consumption results, a low power 
double data rate synchronous dynamic random-access 
memory (LPDDR SDRAM) model from Micron Technol-
ogy was considered [36] as external memory. This mem-
ory consumes, per byte, 119.7 pJ and 116 pJ for reading 
and writing operations, respectively. The HP Cacti 6.5 tool 
[37] was used to simulate the 65 nm SRAM-based SPMs, 
which are used as internal memories.

The details of the SRAM-based SPM memory model 
are found in Table 2. The first column represents size, tim-
ing and energy when considering � sector only, which is 
able to store 17.89% of the SA. The second column repre-
sents sector � plus sector � , where sector � has 103 mem-
ory banks and sector � has 281 memory banks. Finally, 
the last column represents the complete SA, including 194 
memory banks from sector �.

As one can notice in Table 2, when sector � is turned 
off and only sector � remains active, the static energy con-
sumed is reduced from 2.64 to 0.71 mJ/s, according to the 
change in the number of active SRAM cells in memory. 
The dynamic consumption is not changed, since it refers 
to the switching of the accessed cells and their buses and 
amplifiers.

With these results, it was possible to estimate the 
total energy consumption of the static and the proposed 
dynamic control strategy. These results are presented 
in Table 3 and were generated considering the 20 video 
sequences. In this table, the results of the dynamic and 
static management strategies are compared with the naive 
scheme (Naive column), i.e., the SR [−64,+64] does not 
employ any technique to reduce the memory bandwidth or 
energy consumption. The naive approach is not realistic in 
the current video coding scenario. However, we presented 
these results to highlight the contributions of the proposed 

Table 2   65 nm CMOS SRAM-based SPMs hardware characteristics

Sector Sectors SR
� � + � [−64,+64]

Number of banks 103 384 576
Bank size (B) 64 64 64
Access time (ns) 0.62 0.67 0.75
Cycle time (ns) 1.18 1.22 1.21
Dynamic energy (pJ/B) 0.08 0.08 0.09
Static energy (mJ/s) 0.71 2.64 4.56
Total capacity (KB) 6.4 24 36
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approach and also to allow a fairer comparison with the 
related works that used this approach.

Furthermore, the results are compared to a baseline 
approach (L.C + RFC column), which employs the origi-
nal SA (SR [−64,+64] ) using Level C data reuse and 

DDRFC. Table 3 firstly presents the results for HD 1080 
videos followed by the results for UHD videos. Table 3 
also presents the average results for HD 1080 and UHD 
videos, the total average, and the standard deviation.

As one can notice in Table 3 the static schemes, SSI and 
SSO, and the NM dynamic scheme were integrated with 
the Level C data reuse and with the DDRFC. Thus, the real 
gains of these solutions can be observed.

Since SSI and SSO are static schemes they reached the 
best and the worst consumption energy gains, respectively, 
when compared with the original SR. This occurs because 
the static schemes cannot exploit the TZS context to define 
when sector � must be turned on or turned off. Thus, once 
the SSO system has the largest SA available, allowing a 
higher number of comparisons between blocks during the 
ME process, it presents the lowest energy consumption 
reduction when compared to the baseline scheme, 54.4 mJ 
or 33.9% on average. Likewise, the SSI system, that has 
the smallest SA available in the internal memory, it is 
the one with the higher energy consumption reduction. 
On average, the SSI reduces 123.6 mJ or 77.1% of energy 
consumption when compared to the baseline approach. 

Table 3   Total energy 
consumption results (mJ)

Video Naive L.C RFC L.C RFC SSI L.C RFC NM L.C RFC SSO
(×103) (×103) (×103) (×103) (×103)

BasketballDrive 43.49 0.084 0.017 0.053 0.055
BQTerrace 10.87 0.063 0.019 0.028 0.043
Cactus 8.91 0.059 0.016 0.025 0.039
Kimono 31.63 0.076 0.017 0.047 0.051
ParkScene 9.84 0.061 0.017 0.026 0.041
Tennis 42.41 0.082 0.017 0.054 0.054
BlueSky 37.93 0.076 0.022 0.048 0.053
InToTree 51.83 0.088 0.022 0.057 0.060
PedestrianArea 29.97 0.072 0.019 0.040 0.049
RushHour 16.84 0.060 0.017 0.030 0.040
Sunflower 47.47 0.086 0.023 0.054 0.060
Tractor 49.65 0.093 0.027 0.061 0.066
 Average 1080p 31.74 0.075 0.019 0.044 0.051
 Std. dev. 15.60 0.012 0.003 0.013 0.008

CampfireParty 87.53 0.247 0.055 0.127 0.160
Drums 93.60 0.283 0.066 0.154 0.188
Tango 151.98 0.319 0.061 0.190 0.206
ToddlerFountain 152.64 0.359 0.084 0.232 0.241
CatRobot 37.80 0.217 0.053 0.086 0.142
DaylightRoad 112.42 0.287 0.062 0.156 0.187
RollerCoaster 204.47 0.359 0.065 0.223 0.232
TrafficFlow 52.78 0.234 0.055 0.100 0.151
 Average 2160p 111.65 0.288 0.063 0.159 0.188
 Std. dev. 52.10 0.051 0.009 0.050 0.034
 Total average 63.70 0.160 0.037 0.090 0.106
 Std. dev. 52.60 0.110 0.022 0.065 0.071

Fig. 8   NM CTU decision for frame 50 of the videos a BQTerrace 
and b Tennis. The red squares indicate where only sector � was used, 
while the blue squares indicate that sectors � and � were used.



2506	 Journal of Real-Time Image Processing (2021) 18:2495–2510

1 3

When compared to the raw data the SSO and SSI present 
an energy consumption reduction of 99.83% and 99.94% , 
respectively.

Figure 8 presents the energy corner case video results. 
Besides, an example of the NM CTU decision made to 
frame 50 of the videos BQTerrace (Fig. 8a) and Tennis 
Fig. 8b. In Fig. 8 the red squares indicate where sector � 
was used, while the blue squares indicate that sectors � and 
� were used. In Fig. 8a 78.4% of the BQTerrace frame was 
encoded with sector � turned off, achieving high memory 
energy savings. However, Fig. 8b shows that just in 1.5% 
of the cases, the sector � was turned off, i.e., the energy 
savings are practically the same as those obtained by the 
SSO scheme. As one can notice in Table 3 the difference 
between NM and SSO schemes for the Tennis sequence is 
0.24% . This occurs because the Tennis sequence presents 
characteristics such as high motion and texture, which lead 
to less access to the SA central region than other videos. 
This effect can also be seen in Fig. 3 (Sect. 4.1).

As expected, the system with NM dynamic control 
scheme presents average energy consumption results 
between the two static systems: lower than SSO ( −16.4 mJ) 
and higher than SSI ( +52.8mJ. Compared to the baseline 
scheme, the NM system reaches energy consumption sav-
ings of 70.8 mJ or 44.1% on average. Besides, when com-
pared to the naive approach, the NM system reaches an 
energy consumption savings of 99.86% on average. How-
ever, it is important to note the techniques that enable 
energy reduction are likely to lead to coding efficiency 
losses, as will be discussed in the next section.

6.2 � Coding efficiency results

Since the proposed scheme controls which sectors of the 
memory will be turned on or turned off, the consequence 
in terms of coding efficiency is that the TZS algorithm will 
not have the whole original SA available in the search pro-
cess. This restriction, naturally, will cause some impacts 
in terms of coding efficiency and this section presents an 
evaluation of these impacts.

The coding efficiency results use the Bjøntegaard Delta 
Bitrate (BD-rate) metric, which can be interpreted as how 
much lower or higher (in percentage) is the bitrate required 
to represent the encoded video with some encoder altera-
tion, when compared with the original encoder, consider-
ing the same objective quality in both cases [38]. The cod-
ing efficiency results are shown in Table 4. Again, these 
results were compared with the baseline approach. As in 
Table 3, Table 4 presents the results for HD 1080 videos 
and the results for UHD videos. Table 4 also presents aver-
age results for HD 1080 and for UHD videos, as well as 
the total average, the minimum and maximum values and 
the standard deviation.

The results of SSI scheme in Table 4 presented a high-
est loss in coding efficiency, as expected, reaching an 
average increase of 6.17% in BD-rate. The higher is the 
video resolution and the higher is the video movement, 
the higher is the BD-rate degradation caused by the SSI 
scheme. These videos need to use large motion vectors in 
the TZS to best predict the current block. Since SSI deals 
with a very limited SA (only sector � is available), the 
prediction results are far from the optimal ones and the 
degradation in coding efficiency is higher.

In Table 4 one can notice that SSO scheme shows the 
smallest degradation in the coding efficiency with an aver-
age increase of 0.25% in BD-rate. This degradation occurs 
because even with sectors � and � turned-on, the external 
sector is not considered, as explained in Sect. 4.2. In some 
situations, the SSO scheme presented small gains in cod-
ing efficiency (negative values of BD-rate), and this occurs 
mainly because the largest motion vectors are not allowed 

Table 4   BD-rate results for the static (SSI and SSO) and NM 
dynamic scheme

Video Level 
C DDRFC SSI 
( %)

Level 
C DDRFC 
NM ( %)

Level 
C DDRFC 
SSO ( %)

Basketball Drive 4.78 0.360 0.210
BQTerrace 0.36 0.300 −0.120

Cactus 1.10 −0.130 −0.040

Kimono 2.10 −0.030 −0.050

ParkScene 0.18 −0.520 −0.490

Tennis 4.98 0.140 0.100
BlueSky 2.73 0.490 −0.420

InToTree 15.02 0.000 2.380
PedestrianArea 8.27 0.320 0.550
RushHour 2.69 0.440 0.000
Sunflower 4.81 0.180 −0.030

Tractor 3.28 0.000 0.500
 Average 1080p 4.19 0.130 0.220
 Std. dev. 3.93 0.273 0.716

CampfireParty 5.18 1.340 0.970
Drums 1.80 0.650 0.450
Tango 10.49 0.740 0.560
ToddlerFountain 2.67 0.510 0.610
CatRobot 0.95 0.050 0.090
DaylightRoad 13.96 0.760 0.660
RollerCoaster 27.03 −0.380 −0.520

TrafficFlow 11.07 1.830 −0.370

   Average 2160p 9.140 0.690 0.310
   Std. dev. 8.12 0.644 0.491
   Total average 6.17 0.350 0.250
   Min 0.18 −0.520 −0.520

   Max 27.03 1.830 2.380
   Std. dev. 6.44 0.530 0.640
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since the external sector is not available. With small vec-
tors, the motion vector prediction tools [27] will require 
fewer bits to represent these vectors and, then, the impact 
in the bit rate can be reduced even with a prediction result 
a little bit worse.

The NM dynamic management strategy achieved better 
coding efficiency results than SSI for all videos, reaching 
an average BD-rate degradation of 0.35% . This result was 
expected since the NM dynamic control allows the use 
of sector � when the neighbor CTUs required the use of 
this sector, and the SSI scheme always considers sector � 
is turned off. Some NM results are even better than those 
reached by the SSO. The TZS is a heuristic algorithm 
and, by imposing some restrictions, it is possible that the 
results are slightly better.

The small granularity of NM control allows higher 
independence of sector � switching on/off between CTUs 
and presents a higher occurrence of BD-rate values outside 
the range presented by SSO and SSI. In addition, as this 
solution is based on information from neighboring CTUs 
already encoded in the current and past frames, to decide 
the situation of sector � for the CTU being encoded, this 
solution can reach low variations in BD-rate.

Analyzing the relationship between the energy con-
sumption and the coding efficient, the NM presents impor-
tant gains in terms of energy consumption ( 99.86% on 
average) with a very small coding efficiency degradation 
( 0.35% on average). This means that NM reduces, on aver-
age, 15.5% of the energy consumption when compared with 
SSO at a cost of only 0.1% in BD-rate on average. On the 
other way, NM has a coding efficiency degradation 17.6 
times lower than the SSI, with an increase of 2.4 times in 
the energy consumption. The coding efficiency degrada-
tion reached by SSI is prohibitive in a current video coding 
scenario.

Therefore, the results of energy consumption reduc-
tion combined with the BD-rate results show that the 
TZS dynamic management strategy improved the video 
encoding process. Once exploring the video characteristics 

during the video encoding phase, it is possible to turn off 
a memory sector when it becomes less relevant to the TZS 
process. Thus, dynamically turning off a memory sector, it 
was possible to obtain a good relationship between energy 
consumption and coding efficiency.

6.3 � Comparison with related works

This section presents a comparison among related works 
presented in Sect. 2 and our system with dynamic memory 
management (NM). Only solutions implemented in HEVC 
test model were considered. Table 5 presents the compara-
tive results with seven related works. In this comparison, 
five metrics were used: (1) energy saving, (2) BD-rate, (3) 
memory bandwidth saving (BW saving), (4) ME algorithm 
(ME Alg.), and (5) amount of test sequences used (#Test 
Seq.).

As one can notice in the second column of Table 5, 
the state-of-the-art related works lack energy consumption 
figures, thus precluding a fair energy comparison presenta-
tion. However, our system reaches 99.8% (or 500 times) of 
memory energy savings over the simplest scheme, consid-
ering the 20 test sequences.

When the BD-rate results are compared, our approach 
achieves competitive results, once the related works pre-
sent BD-rate loss from 0.02 to 1.8% , on average. Com-
pared with works that employ TZS ME algorithm, such as 
[22] and [26] our system with the NM scheme presents the 
smallest BD-rate loss, 0.35% for NM, against 0.70% and 
1.1% in [22] and [26], respectively.

The memory bandwidth savings results are presented 
in the fourth column of Table 5. The proposed system 
achieves a memory bandwidth savings of 94% on average 
for the test sequences. When compared to [26], which is 
the only related work that uses the TZS algorithm and 
presents memory bandwidth savings results, our system 
presents an improvement of 16% in memory bandwidth 
savings. Besides, the proposed system achieves 40% more 
memory bandwidth savings than [27]. Furthermore, the 
proposed system presents a coding efficiency three times 
lower than [26] and our video test set is almost three 
times higher than [26], including HD 1080p and UHD 
test sequences.

Moreover, our system achieves better memory band-
width savings than related works that apply dynamic 
search range algorithms with the full search algorithm. 
This is because we combined three techniques (reference 
frame compression, data reuse, and dynamic management) 
to achieve high memory bandwidth savings.

Table 5   Comparison with related works

Sol. Energy sav-
ing

BD-rate loss BW saving ME Alg. #Test Seq.

NM 99.8% 0.35% 94% TZS 20
[22] NA 0.70% NA TZS 22
[26] NA 1.10% 78% TZS 7
[27] NA 1.80% 54% MHGS 4
[21] NA 0.20% NA FS 4
[23] NA 0.42% 43% FS 5
[24] NA 0.17% 91% FS 4
[25] NA 0.30% 90% FS 4
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7 � Conclusions

This work presented a search memory design and TZS 
dynamic memory management, which explores power 
gating at the memory sector level. To better understand 
the TZS access behavior, this work presented a statisti-
cal analysis of the pattern of memory accesses performed 
by the TZS algorithm during the ME process for video 
encoding. From this quantitative study, we confirmed 
that most accesses are made in the central region of the 
SA, as initially expected. Interestingly, 95% of the most 
accessed samples are in a region that corresponds to 
66.65% of the SA. Based on this analysis, we perform 
reductions in the SA to verify the impact on the coding 
efficiency when removing some of the less accessed sam-
ples from the SA. This evidence led to our proposal of 
multi-sector scratchpad memory, which can perform power 
gating when accesses to sector � become not relevant to 
the ME process. To substantially save energy, this work 
presented the neighbors management, a dynamic memory 
management strategy to decide to turn off or not sector � . 
This dynamic management was integrated with a refer-
ence frame compressor and a Level C data reuse scheme, 
both presented in prior works. The results were obtained 
from 20 test video sequences, 1080p and 2160p, and com-
pared with a naive approach and with a baseline scheme, 
which employs the reference frame compressor and Level 
C data reuse scheme. Our system with dynamic manage-
ment obtained a coding efficiency loss of just 0.35% and 
an energy consumption reduction of 99.8% (or 500 times 
reduction) when compared with the naive approach, and 
44.1% when compared to the baseline scheme. Our sys-
tem presents better memory bandwidth/energy savings and 
coding efficiency results when compared to related works.
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