Skip to main content
Log in

Improving performance of background subtraction on mobile devices: a parallel approach

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Real-time detection of moving objects in a resource-constrained environment, such as a personal mobile device, is a challenging task. Nowadays, cameras of cell phones and other mobile devices produce high-resolution videos. In addition, possible camera motion which is inherent to mobile devices adds further complexity to the image processing. Real-time analysis of those videos can be performed using optimized versions of the background subtraction methods. The focus of this work is an efficient implementation of background subtraction using dual-mode single Gaussian model with age on Android platform. Several optimizations were applied: parallelization through RenderScript framework, block processing and grayscale transformation of pixels, and memory transfer and footprint reduction. Implemented algorithm was evaluated using multiple test scenarios on two different platforms. We observed speedups up to 6 times over the reference sequential implementation, real time performance of 50 FPS for 640 \(\times\) 480 videos and 20.7 FPS for 1280 \(\times\) 720 videos. Comparative analysis with state-of-the-art methods on CDNet 2014 PTZ category showed good F1-measure. The obtained results are carefully discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Acosta, A., Merino, C., Totz, J.: Analysis of OpenCL support for mobile GPUs on android. In: Proceedings of the International Workshop on OpenCL, pp. 1–6 (2018)

  2. Allebosch, G., Deboeverie, F., Veelaert, P., Philips, W.: EFIC: edge based foreground background segmentation and interior classification for dynamic camera viewpoints. In: International Conference on Advanced Concepts for Intelligent Vision Systems, pp. 130–141. Springer (2015)

  3. Bahri, H., Chouchene, M., Sayadi, F.E., Atri, M.: Real-time moving human detection using HOG and Fourier descriptor based on CUDA implementation. J. Real-Time Image Process. (2019). https://doi.org/10.1007/s11554-019-00935-1

    Article  Google Scholar 

  4. Bianco, S., Ciocca, G., Schettini, R.: Combination of video change detection algorithms by genetic programming. IEEE Trans. Evol. Comput. 21(6), 914–928 (2017)

    Article  Google Scholar 

  5. Bloisi, D.D., Pennisi, A., Iocchi, L.: Parallel multi-modal background modeling. Pattern Recognit. Lett. 96, 45–54 (2017)

    Article  Google Scholar 

  6. Chapel, M.N., Bouwmans, T.: Moving objects detection with a moving camera: a comprehensive review. Comput. Sci. Rev. 38, 100310 (2020)

    Article  MathSciNet  Google Scholar 

  7. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  8. Garcia-Garcia, B., Bouwmans, T., Silva, A.J.R.: Background subtraction in real applications: challenges, current models and future directions. Comput. Sci. Rev. 35, 100204 (2020)

    Article  MathSciNet  Google Scholar 

  9. Guihot, H.: Pro Android Apps Performance Optimization. Springer (2012)

    Book  Google Scholar 

  10. Guler, P., Emeksiz, D., Temizel, A., Teke, M., Temizel, T.T.: Real-time multi-camera video analytics system on gpu. J. Real-Time Image Process. 11(3), 457–472 (2016)

    Article  Google Scholar 

  11. Henderson, P., Vertescher, M.: An analysis of parallelized motion masking using dual-mode single gaussian models. arXiv preprint arXiv:1702.05156 (2017)

  12. Kalsotra, R., Arora, S.: A comprehensive survey of video datasets for background subtraction. IEEE Access 7, 59143–59171 (2019)

    Article  Google Scholar 

  13. Kovačev, P., Mišić, M., Tomašević, M.: Parallelization of the mixture of Gaussians model for motion detection on the GPU. In: 2018 Zooming Innovation in Consumer Technologies Conference (ZINC), pp. 58–61. IEEE (2018)

  14. Kumar, P., Singhal, A., Mehta, S., Mittal, A.: Real-time moving object detection algorithm on high-resolution videos using GPUs. J. Real-Time Image Process. 11(1), 93–109 (2016)

    Article  Google Scholar 

  15. Kushwaha, A., Khare, A., Prakash, O., Khare, M.: Dense optical flow based background subtraction technique for object segmentation in moving camera environment. IET Image Process. 14(14), 3393–3404 (2020)

    Article  Google Scholar 

  16. Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., Hengel, A.V.D.: A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. (TIST) 4(4), 1–48 (2013). https://doi.org/10.1145/2508037.2508039

    Article  Google Scholar 

  17. Mabrouk, L., Huet, S., Belkouch, S., Houzet, D., Zennayi, Y., Hamzaoui, A.: Performance and scalability improvement of GMM background segmentation algorithm on multi-core parallel platforms. In: International Conference on Electronic Engineering and Renewable Energy, pp. 120–127. Springer (2018)

  18. Mabrouk, L., Huet, S., Houzet, D., Belkouch, S., Hamzaoui, A., Zennayi, Y.: Efficient adaptive load balancing approach for compressive background subtraction algorithm on heterogeneous CPU–GPU platforms. J. Real-Time Image Process. 17(5), 1567–1583 (2020)

    Article  Google Scholar 

  19. Montero, V.J., Jung, W.Y., Jeong, Y.J.: Fast background subtraction with adaptive block learning using expectation value suitable for real-time moving object detection. J. Real-Time Image Process. 18, 967–981 (2021)

  20. Moo Yi, K., Yun, K., Wan Kim, S., Jin Chang, H., Young Choi, J.: Detection of moving objects with non-stationary cameras in 5.8 ms: bringing motion detection to your mobile device. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 27–34 (2013)

  21. Nurhadiyatna, A., Wijayanti, R., Fryantoni, D.: Extended Gaussian mixture model enhanced by hole filling algorithm (GMMHF) utilize GPU acceleration. In: Inf. Sci. and Appl. (ICISA), pp. 459–469. Springer (2016)

  22. Piccardi, M.: Background subtraction techniques: a review. In: 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583), vol. 4, pp. 3099–3104. IEEE (2004)

  23. Plyer, A., Le Besnerais, G., Champagnat, F.: Massively parallel Lucas Kanade optical flow for real-time video processing applications. J. Real-Time Image Process. 11(4), 713–730 (2016)

    Article  Google Scholar 

  24. Renderscript: setting floating point precision. https://developer.android.com/guide/topics/renderscript/compute#setting-floating-point-precision. Accessed: 2021-03-15

  25. Sajid, H., Cheung, S.C.S.: Universal multimode background subtraction. IEEE Trans. Image Process. 26(7), 3249–3260 (2017)

    Article  MathSciNet  Google Scholar 

  26. Sheikh, Y., Javed, O., Kanade, T.: Background subtraction for freely moving cameras. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1219–1225. IEEE (2009)

  27. Shen, Y., Hu, W., Yang, M., Liu, J., Wei, B., Lucey, S., Chou, C.T.: Real-time and robust compressive background subtraction for embedded camera networks. IEEE Trans. Mobile Comput. 15(2), 406–418 (2015)

    Article  Google Scholar 

  28. Sobral, A., Vacavant, A.: A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput. Vis. Image Underst. 122, 4–21 (2014)

    Article  Google Scholar 

  29. Sooraj, P.S.A., Kollerathu, V., Sudhakaran, V.: Real-time traffic counter using mobile devices. J. Big Data Anal. Transp. 3, 109–118 (2021)

  30. St-Charles, P.L., Bilodeau, G.A., Bergevin, R.: Subsense: a universal change detection method with local adaptive sensitivity. IEEE Trans. Image Process. 24(1), 359–373 (2014)

    Article  MathSciNet  Google Scholar 

  31. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), vol. 2, pp. 246–252. IEEE (1999)

  32. Szwoch, G., Ellwart, D., Czyżewski, A.: Parallel implementation of background subtraction algorithms for real-time video process. On a supercomputer platform. J. Real-Time Image Process. 11(1), 111–125 (2016)

    Article  Google Scholar 

  33. Tezcan, M.O., Ishwar, P., Konrad, J.: BSUV-Net 2.0: spatio-temporal data augmentations for video-agnostic supervised background subtraction. IEEE Access 9, 53849–53860 (2021)

    Article  Google Scholar 

  34. Tomasi, C., Kanade, T.: Detection and tracking of point features. Int. J. Comput. Vis. 137–154 (1991)

  35. Wang, Y., Jodoin, P.M., Porikli, F., Konrad, J., Benezeth, Y., Ishwar, P.: Cdnet 2014: An expanded change detection benchmark dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 387–394 (2014)

  36. Xu, Y., Dong, J., Zhang, B., Xu, D.: Background modeling methods in video analysis: a review and comparative evaluation. CAAI Trans. Intell. Technol. 1(1), 43–60 (2016). https://doi.org/10.1016/j.trit.2016.03.005

    Article  Google Scholar 

  37. Yu, Y., Kurnianggoro, L., Jo, K.H.: Moving object detection for a moving camera based on global motion compensation and adaptive background model. Int. J. Control Autom. Syst. 17(7), 1866–1874 (2019)

    Article  Google Scholar 

  38. Yun, K., Choi, J.Y.: Robust and fast moving object detection in a non-stationary camera via foreground probability based sampling. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 4897–4901. IEEE (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Mišić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partially funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia (III44009 and TR32047). The authors gratefully acknowledge the financial support.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 560 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mišić, M., Kovačev, P. & Tomašević, M. Improving performance of background subtraction on mobile devices: a parallel approach. J Real-Time Image Proc 19, 275–286 (2022). https://doi.org/10.1007/s11554-021-01184-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-021-01184-x

Keywords

Navigation