Abstract
In this paper, a high speed cartesian to polar conversion of an image and efficient Mutual Information (MI) computation methods have been proposed for high-speed multi-modal image registration. Further, a complete hardware-based system for computation of existing transformation parameters between two images has been developed. The proposed method speed up MI computation and cartesian to polar conversion of an image by detecting and discarding redundant computation. The proposed system is mapped in Field Programmable Gate Array (FPGA).











Similar content being viewed by others
References
Birk, M., Kretzek, E., Figuli, P., Weber, M., Becker, J., Ruiter, N.: High-speed medical imaging in 3d ultrasound computer tomography. Parallel Distributed Syst. IEEE Trans. 27(2), 455–467 (2016)
Bowen, F., Hu, J., Du, E.Y.: A multistage approach for image registration. IEEE Trans. Cybernet. 46(9), 2119–2131 (2016)
Brown, L.G.: A survey of image registration techniques. ACM Comput. Surveys (CSUR) 24(4), 325–376 (1992)
Cadenas, J.O., Sherratt, R.S., Huerta, P., Kao, W.: Parallel pipelined array architectures for real-time histogram computation in consumer devices. IEEE Trans. Consumer Electron. 57(4), 1460–1464 (2011)
Castro-Pareja, C.R., Shekhar, R.: Hardware acceleration of mutual information-based 3d image registration. J. Imaging Sci. Technol. 9(2), 105–113 (2005)
Chanwimaluang, T., Fan, G.: Retinal image registration for nih’s etdrs, pp. 51–59. Springer, Berlin Heidelberg, Berlin, Heidelberg (2005)
Esteghamatian, M., Azimifar, Z., Radau, P., Wright, G.: Real time cardiac image registration during respiration: a time series prediction approach. J. Real-Time Image Process. 8(2), 179–191 (2013)
Gp, P., Pg, B., Dl, H., Dj, H., J., W.: Validation of a two- to three-dimensional registration algorithm for aligning preoperative ct images and intraoperative fluoroscopy images. Med. Phys. 6, 1024–1032 (2001)
Guo, F., Zhao, X., Zou, B., Ouyang, P.: 3d reconstruction and registration for retinal image pairs, in ‘2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC)’, pp. 364–368 (2018)
Han, L., Hipwell, J.H., Eiben, B., Barratt, D., Modat, M., Ourselin, S., Hawkes, D.J.: A nonlinear biomechanical model based registration method for aligning prone and supine mr breast images. IEEE Trans. Med. Imaging 33(3), 682–694 (2014)
Harris, C., Stephens, M.: A combined corner and edge detector., in ‘Alvey vision conference’, Vol. 15, Manchester, UK, p. 50 (1988)
Kim, J.-M., Song, M.-K., Kim, K.-H., Lee, W.-K.: ‘Key point detection and high speed image registration using blog’, 2, 245–249 (2010)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Ma, Q., Du, X., Wang, J., Ma, Y., Ma, J.: Robust feature matching via gaussian field criterion for remote sensing image registration. J. Real-Time Image Process. 15(3), 523–536 (2018)
Maintz, J., Viergever, M.A.: A survey of medical image registration. Med. Image Anal. 2(1), 1–36 (1998)
Matungka, R., Zheng, Y.F., Ewing, R.L.: Image registration using adaptive polar transform. Image Process. IEEE Trans. 18(10), 2340–2354 (2009)
Mondal, P., Banerjee, S.: A reconfigurable memory-based fast vlsi architecture for computation of the histogram. IEEE Trans. Consumer Electron. 65(2), 128–133 (2019)
Mondal, P., Banerjee, S.: Fpga-accelerated adaptive projection-based image registration. J. Real-Time Image Process. 18(1), 113–125 (2020)
Nandalike, R., Sarojadevi, H.: Multimodal image feature detection with roi-based optimization for image registration. J. Real-Time Image Process. 17(4), 1007–1013 (2020)
Shahbahrami, A., Hur, J. Y., Juurlink, B. and Wong, S. (2008), FPGA implementation of parallel histogram computation, in ‘2nd HiPEAC Workshop on Reconfigurable Computing, Göteborg, Sweden’, pp. 63–72
Song, Y., Qu, J., Liu, C.: Real-time registration of remote sensing images with a markov chain model. J. Real-Time Image Process. 18(5), 1527–1540 (2020)
Weese, J., Goecke, R., Penney, G.P., Desmedt, P., Buzug, T.M., Schumann, H.: Fast voxel-based 2d/3d registration algorithm using a volume rendering method based on the shear-warp factorization. Proc. SPIE 3661, 802–810 (1999)
Zeng, Q., Adu, J., Liu, J., Xu, Y., Gong, M.: Real-time adaptive visible and infrared image registration based on morphological gradient and c sift. J. Real-Time Image Process. 17(5), 1103–1115 (2020)
Zhi, X., Yan, Junhua, Hang, Y., Wang, S.: Realization of cuda-based real-time registration and target localization for high-resolution video images. J. Real-Time Image Process. 16(4), 1025–1036 (2019)
Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)
Zokai, S., Wolberg, G.: Image registration using log-polar mappings for recovery of large-scale similarity and projective transformations. Image Process. IEEE Trans. 14(10), 1422–1434 (2005)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mondal, P. FPGA-accelerated adaptive cartesian to polar conversion and efficient MI computation for image registration. J Real-Time Image Proc 19, 529–537 (2022). https://doi.org/10.1007/s11554-022-01205-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-022-01205-3