Skip to main content
Log in

VLSI architecture and implementation of HDR camera signal processor

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

The camera imaging built with high dynamic range (HDR) techniques can effectively improve the quality of images and so increase the recognition rate for computer vision systems. This paper presents the parallel architecture with a pipelined schedule to realize a real-time HDR processor based on a high-performance algorithm. With the hardware-oriented design, the processing kernel employs a near approach to reduce the computational circuit. The full HDR chip is realized with the module-by-module design and simulation. The main modules include the inverse module, the dark enhancement circuit, the parameter statistics circuit, the picture type judgment circuit, the mixing circuit and the bright enhancement circuit. Finally, these modules are combined with the pipelined schedule to realize a high-speed HDR core. In total, the latency time of the circuit is 4 line-buffer length added 14 clocks. This circuit is mapping to one FPGA (Field Programmable Gate Array) chip to verify its performance. The results demonstrate that the operation frequency can achieve to near 120 MHz, and data throughput rate is 360 M bytes per second. This chip can output one RGB (Red, Green, Blue) pixel per cycle, which can meet the requirement of high-resolution HDR camera performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Confirms all data availability statement.

References

  1. Huo, Y., Yang, F.: High-dynamic range image generation from single low-dynamic range image. IET Image Process. 10(3), 198–205 (2016)

    Article  Google Scholar 

  2. Lee, B.D., Sunwoo, M.H.: HDR image reconstruction using segmented image learning. IEEE Access 9, 142729–142742 (2021)

    Article  Google Scholar 

  3. Purohit, M., Singh, M., Kumar, A., Kaushik, B.K.: Enhancing the surveillance detection range of image sensors using HDR techniques. IEEE Sensor J. 21(17), 19516–19528 (2021)

    Article  Google Scholar 

  4. Park, J.S., Soh, J.W., Cho, N.I.: High dynamic range and super-resolution imaging from a single image. IEEE Access 6, 10966–10978 (2018)

    Article  Google Scholar 

  5. Choi, S., Cho, J., Song, W., Choe, J., Yoo, J., Sohn, K.: Pyramid inter attention for high dynamic range imaging. Sensors 20(18), 1–16 (2020)

    Article  Google Scholar 

  6. Hayat, N., Imran, M.: Multi-exposure image fusion technique using multi-resolution blending. IET Image Process. 13(13), 2554–2561 (2019)

    Article  Google Scholar 

  7. Çoğalan, U., Akyüz, A.O.: Deep joint deinterlacing and denoising for single shot dual-ISO HDR reconstruction. IEEE Image Process. 29, 7511–7524 (2020)

    Article  MATH  Google Scholar 

  8. Dave, H.S.N., Upadhyay, D.: Modelling and performance analysis of various CMOS applications based on recent technologies. In: 2015 IEEE International Conference on Computational Intelligence and Communication Networks, pp. 1345–1349 (2015)

  9. Hirai, K., Osawa, N., Hori, M., Horiuchi, T., Tominaga, S.: High dynamic-range spectral imaging system for omnidirectional scene capture. J. Imaging 4(4), 53 (2018)

    Article  Google Scholar 

  10. Zhan, B., Li, F., Lu, M.: HDR synthesis technology for spaceborne CMOS cameras based on virtual digital TDI. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 3824–3833 (2020)

    Article  Google Scholar 

  11. Hsia, S.C., Kuo, T.T.: High-performance high-dynamic-range image generation by inverted local patterns. IET Image Process. 9(12), 1083–1091 (2015)

    Article  Google Scholar 

  12. Wu, X., Zhang, H., Hu, X., Shakeri, M., Fan, C., Ting, J.: HDR reconstruction based on the polarization camera. IEEE Robot. Autom. Lett. 5(4), 5113–5119 (2020)

    Article  Google Scholar 

  13. Barman, N., Martini, M.G.: User generated HDR gaming video streaming: dataset, codec comparison, and challenges. EEE Trans. Circuits Syst. Video Technol. 32(3), 1236–1249 (2022)

    Article  Google Scholar 

  14. Musil, M., Nosko, S., Zemcik, P.: De-ghosted HDR video acquisition for embedded systems. J. Real-Time Image Process. 18, 659–668 (2021). https://doi.org/10.1007/s11554-020-01001-x

    Article  Google Scholar 

  15. Jang, H., Bang, K., Jang, J., Hwan, D.: Dynamic range expansion using cumulative histogram learning for high dynamic range image generation. IEEE Access 8, 38554–38567 (2020)

    Article  Google Scholar 

  16. Rana, A., Singh, P., Valenzise, G., Dufaux, F., Komodakis, N., Smolic, A.: Deep tone mapping operator for high dynamic range images. IEEE Image Process. 29, 1285–1298 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, S., An, G.H., Kang, S.: Deep chain HDRI: reconstructing a high dynamic range image from a single low dynamic range image. IEEE Access 6, 49913–49924 (2018)

    Article  Google Scholar 

  18. Nosko, S., et al.: Color HDR video processing architecture for smart camera. J. Real-Time Image Process. 17, 555–566 (2020). https://doi.org/10.1007/s11554-018-0810-z

    Article  Google Scholar 

  19. Chen, S.L., Chang, H.R.: Fully pipelined low-cost and high-quality color demosaicking VLSI design for real-time video applications. IEEE Trans. Circuits Syst. II Express Briefs 62(6), 588–592 (2015)

    Google Scholar 

  20. Yang, X., Zhou, W., Li, H.: MCFD: a hardware-efficient noniterative multicue fusion demosaicing algorithm. IEEE Trans. Circuits Syst. Video Technol. 31(9), 3575–3589 (2021)

    Article  Google Scholar 

  21. Raina, P., Tikekar, M., Chandrakasan, A.P.: An energy-scalable accelerator for blind image deblurring. IEEE J. Solid-State Circuits 52(7), 1849–1862 (2017)

    Article  Google Scholar 

  22. Katic, N., Popovic, V., Cojbasic, R., Schmid, A., Leblebici, Y.: A relative imaging CMOS image sensor for high dynamic range and high frame-rate machine vision imaging applications. IEEE Sensor J. 15(7), 4121–4129 (2015)

    Article  Google Scholar 

  23. Lee, S.S., Lee, E., Hwang, Y., Jang, S.J.: Hardware implementation of fast high dynamic range processor for real-time 4K UHD video. In: 2016 International SoC Design Conference (ISOCC), pp. 309–310 (2016)

  24. Borges, A., Braatz, L., Zatt, B., Porto, M., Corrêa, G.: Segmented spline hardware design for high dynamic range video pre-processor. In: 2017 30th IEEE Symposium on Integrated Circuits and Systems Design (SBCCI), pp. 143–148 (2017)

  25. Hsu, P.H., Yeh, Y.M., Yeh, C.M., Lu, Y.C.: A high dynamic range light field camera and its built-in data processor design. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS)

  26. Yang, J., Shahnovich, U., Yadid-Pecht, O.: Mantissa-exponent-based tone mapping for wide dynamic range image sensors. IEEE Trans. Circuits Syst. II Express Briefs 67(1), 142–146 (2020)

    Google Scholar 

  27. https://www.kynix.com/Detail/271964/IMX036LQR-C.html

  28. Xilinx, the field programming gate array, Web: www.xilinx.com

  29. Samir Palnitkar, “Veriolg HDL,” Prentice Hall, Nj07458, 1996

  30. https://www.alldatasheet.com/datasheet-pdf/pdf/312992/ETRON/EM68B16CWPA-25H.html

Download references

Funding

Ministry of Science and Technology, Taiwan (Grant no. 109-2221-E-224-042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Chang Hsia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsia, SC., Wang, SH. & Kuo, TT. VLSI architecture and implementation of HDR camera signal processor. J Real-Time Image Proc 20, 6 (2023). https://doi.org/10.1007/s11554-023-01262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11554-023-01262-2

Keywords

Navigation