Skip to main content
Log in

A new approach to snow avalanche rescue using UAV pictures based on convolutional neural networks

  • Research
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

A Correction to this article was published on 14 July 2023

This article has been updated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Data availability

Data will be accessible on request.

Change history

References

  1. Lu, B., Zhang, X., Wen, J.: Real world effectiveness of data and communication technologies in disaster relief: a systematic review. Iran. J. Public Health 49(10), 1813–1826 (2022). https://doi.org/10.18502/ijph.v49i10.4678

    Article  Google Scholar 

  2. Statista. Number of deaths due to avalanches in the U.S. from 1990 to 2022. https://www.statista.com/statistics/377029/number-of-deaths-due-to-avalanches-in-the-us/(n.d.). Accessed 28 Apr 2023

  3. Fruehauf, F., Heilig, A., Schneebeli, M., Fellin, W., Scherzer, O.: Tests and rules to detect snow avalanche sacrifices using airborne ground-penetrating radar. IEEE Trans. Geosci. Remote Sens. 47, 2240–2251 (2009). https://doi.org/10.1109/TGRS.2009.2012717

    Article  Google Scholar 

  4. Steiner, L., Meindl, M., Marty, C., Geiger, A.: Impact of GPS data processing on the estimation of snow water equivalent using refracted GPS waves. IEEE Trans. Geosci. Remote Sens. 58(1), 123–135 (2020). https://doi.org/10.1109/TGRS.2019.2934016

    Article  Google Scholar 

  5. Schleppe, J.B., Lachapelle, G.: GPS tracking performance under snow avalanche deposited snow. In: 19th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2006), pp. 3105–3116. Fort Worth, TX (2006)

  6. Wolfe, V., Frobe, W., Shrinivasan, V., Hsieh, T.: Detecting and locating cell phone waves from snow avalanche sacrifices using robot aerial vehicles. In: 2015 International Conference on Robot Aircraft Systems (ICUAS), pp. 704–713. IEEE, Piscataway, NJ (2015). https://doi.org/10.1109/ICUAS.2015.7152353

  7. Rudol, P., Doherty, P.: Man detecting and geosurroundingization for UAV Search and rescue missions using color and thermal picturery. In: 2008 IEEE Aerospace Conference, pp. 1–8. IEEE, Piscataway, NJ (2008). https://doi.org/10.1109/AERO.2008.4526559

  8. Andriluka, M., Schnitzspan, P., Meyer, J., Kohlbrecher, S., Petersen, K., von Stryk, O., Roth, S., Schiele, B.: Vision based victim detecting from robot aerial vehicles. In: 2010 IEEE/RSJ International Conference on Intelligent Machines and Systems, pp. 1740–1747. Taipei, Taiwan (2010). https://doi.org/10.1109/IROS.2010.5649223.

  9. Höfer, T., Thamsafar, F., Benbarka, N., Zell, A.: Subject detecting and Autoencoder-based 6D pose estimation for highly cluttered Bin Picking. In: 2021 IEEE International Conference on Picture Data processing (ICIP), pp. 704–708. Anchorage, AK, USA (2021).

  10. Andriluka, M., Roth, S., Schiele, B.: Pictorial structures revisited: People detecting and articulated pose estimation. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1014–1021. IEEE, Piscataway, NJ (2009). https://doi.org/10.1109/CVPR.2009.5206754

  11. Xu, X., Qu, Q., Zhang, H., Wang, J., Wu, J., Ran, Y., Tan, Z.: Polarized laser target detection system for smoky environment based on full-waveform decomposition and multiscale convolutional neural networks with attention. ISPRS J. Photogramm. Remote Sens. 199, 214–225 (2023). https://doi.org/10.1016/j.isprsjprs.2023.04.012

    Article  Google Scholar 

  12. Kim, C.H., Ahn, S., Chae, K.Y., Hooker, J., Rogachev, G.V.: Noise signal identification in time projection chamber data using deep learning model. Nucl. Instrum. Methods Phys. Res. A Accelerat. Spectrom. Detect. Assoc. Equip. 1048, 168025 (2023). https://doi.org/10.1016/j.nima.2023.168025

    Article  Google Scholar 

  13. Bourdev, L., Malik, J.: Poselets: Man part detectors trained using 3D human pose annotations. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1365–1372. IEEE, Piscataway, NJ (2009). https://doi.org/10.1109/ICCV.2009.5459303

  14. Panchuk, M., Kryshtopa, S., Panchuk, A.: Innovative Technologies for the Creation of a New Sustainable, Environmentally Neutral Energy Production in Ukraine. In: 2020 International Conference on Decision Aid Sciences and Application. 9317165, 732–737 (2020). https://doi.org/10.1109/DASA51403.2020.9317165

  15. Moranduzzo, T., Melgani, F.: Automatic car counting way for robot aerial vehicle pictures. IEEE Trans. Geosci. Remote Sens. 52, 1635–1647 (2014)

    Article  Google Scholar 

  16. Moranduzzo, T., Melgani, F.: Detecting cars in UAV pictures with a catalog-based approach. IEEE Trans. Geosci. Remote Sens. 52, 6356–6367 (2014)

    Article  Google Scholar 

  17. Kondakova, V.N., Pankratova, K.V., Pomortseva, A.A., Pospekhov, G.B.: Analysis of the problem of classification of mining wastes. In: Conference Proceedings, Engineering and Mining Geophysics 2020, Vol. 2020, pp. 1–8 (2020)

  18. Sakharova, T., Mukhametov, A., Bokov, D.: The role of divalent iron cations in the growth, adhesive properties and extracellular adaptation mechanisms of Propionibacterium sp. Saudi J. Biol. Sci. 29(5), 3642–3646 (2022). https://doi.org/10.1016/j.sjbs.2022.02.048

    Article  Google Scholar 

  19. Brugger, H., Falk, M.: Analysis of snow avalanche safety equipment for backcountry skiers. Amazonaws.com. https://s3.amazonaws.com/BackcountryAccess/content/papers/brugger_falk_report_2002.pdf (2016). Accessed 12 Aug 2022

  20. Clapuyt, F., Vanacker, V., Van Oost, K.: Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion rules. Geomorphology 260, 4–15 (2016)

    Article  Google Scholar 

  21. Harknett, J., et al.: The use of immersive virtual reality for teaching area work skills in complex structural terrains. J. Struct. Geol. 163, 104681 (2022). https://doi.org/10.1016/j.jsg.2022.104681

    Article  Google Scholar 

  22. Pell, T., Li, J.Y.Q., Joyce, K.E.: Demystifying the differences between structure-from-motion software packages for fore-data processing drone data. Drones 6(1), 24 (2022)

    Article  Google Scholar 

  23. Singh, N., Sabrol, H.: Convolutional neural networks-an extensive arena of deep learning. A comprehensive study. Arch. Comput. Ways Eng. 28(7), 4755–4780 (2021)

    Article  Google Scholar 

  24. Sural, S., Gang Qian, Pramanik, S.: Segmentation and diagram generation using the HSV color space for picture retrieval. In: IEEE International Conference on Picture Data processing, pp. II–II. IEEE, Piscataway, NJ. (2002). https://doi.org/10.1109/ICIP.2002.1040019

  25. Ghiasi, G., LinLe, T.-Y., Le, Q.V.: NAS-FPN: Learning scalable characteristic pyramid architecture for subject detecting. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7029–7038. Long Beach, CA, USA (2019)

  26. Dalal, N., Triggs, B.: Diagrams of oriented gradients for human detecting. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp. 886–893. IEEE, Piscataway, NJ (2005). https://doi.org/10.1109/CVPR.2005.177

  27. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN characteristics off-the-shelf: An astounding baseline for recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 806–813. Columbus, USA (2014)

  28. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: A deep convolutional activation characteristic for generic visual recognition. In: Proc. ICML, pp. 647–655. Beijing, China (2014)

  29. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. White.stanford.edu. https://white.stanford.edu/teach/index.php/An_Introduction_to_Convolutional_Neural_Networks (2016). Accessed 12 Aug 2022

  30. Kryshtopa, S., Melnyk, V., Dolishnii, B., Korohodskyi, V., Prunko, I., Kryshtopa, L., Zakhara, I., Voitsekhivska, T.: Improve upon of the form of forecasting heavy metals of exhaust gases of motor vehicles in the soil. Eastern-Eur. J Enterp. Technol. 4, 1–8 (2019). https://doi.org/10.15587/1729-4061.2019.175892

    Article  Google Scholar 

  31. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Picturenet classification with deep convolutional neural networks. In: Vardi, M.Y. (ed.) Advances in Neural Data Data processing Systems, pp. 1097–1105. Curran Associates Inc, Red Hook (2012)

    Google Scholar 

  32. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856. IEEE, Piscataway, NJ (2018). https://doi.org/10.1109/CVPR.2018.00716

  33. CS231n Convolutional Neural Networks for Visual Recognition. cs231n.github.io. http://cs231n.github.io/transfer-learning/ (2016). Accessed 12 Aug 2022

  34. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9. IEEE, Piscataway, NJ (2015). https://doi.org/10.1109/CVPR.2015.7298594

  35. Pasolli, E., Melgani, F., Tuia, D., Pacifici, F., Emery, W.J.: TLM active learning approach for picture classification using spatial data. IEEE Trans. Geosci. Remote Sens. 52(4), 2217–2233 (2014). https://doi.org/10.1109/TGRS.2013.2258676

    Article  Google Scholar 

  36. Segata, N., Pasolli, E., Melgani, F., Blanzieri, E.: Surrounding TLM approaches for fast and accurate classification of remote-sensing pictures. Int. J. Remote Sens. 33, 6186–6201 (2012). https://doi.org/10.1080/01431161.2012.678947

    Article  Google Scholar 

  37. Nguyen, K., Fookes, C., Ross, A., Sridharan, S.: Iris recognition with off-the-shelf CNN characteristics: a deep learning perspective. IEEE Access 6, 18848–18855 (2018). https://doi.org/10.1109/ACCESS.2017.2784352

    Article  Google Scholar 

  38. Sertkaya, M.E., Ergen, B., Togacar, M.: Diagnosis of eye retinal diseases based on convolutional neural networks using optical coherence pictures. In: 2019 23rd International Conference Electronics, pp. 1–5. IEEE, Piscataway, NJ (2019). https://doi.org/10.1109/ELECTRONICS.2019.8765579

  39. Jalilian, E., Wimmer, G., Uhl, A., Karakaya, M.: Deep learning based off-angle iris recognition. In: IEEE ICASSP 2022. 2022 IEEE International Conference on Acoustics, Speech and Wave Data processing, pp. 4048–4052. IEEE, Piscataway, NJ (2022). https://doi.org/10.1109/ICASSP43922.2022.9746090

  40. Trimakno, D., Kusrini: Impact of augmentation on batik classification using Convolution Neural Network and K-Neareast Neighbor. In: 2021 4th International Conference on Data and Communications Technology (ICOIACT), pp. 285–289. IEEE, Piscataway, NJ (2021). https://doi.org/10.1109/ICOIACT53268.2021.9564000

  41. Hernandez-Diaz, K., Alonso-Fernandez, F., Bigun, J.: Cross-spectral periocular recognition with conditional adversarial networks. In: 2020 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–9. IEEE, Piscataway, NJ (2020). https://doi.org/10.48550/arXiv.2008.11604

  42. Balde, A.M., Chhabra, M., Ravulakollu, K., Goyal, M., Agarwal, R., Dewan, R.: Iris disease detecting using convolutional neural network. In: 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom), pp. 644–647. IEEE, Piscataway, NJ (2022). https://doi.org/10.23919/INDIACom54597.2022.9763164

  43. Sallam, A., Amery, H.A., Al-Qudasi, S., Al-Ghorbani, S., Rassem, T.H., Makbol, N.M.: Iris recognition system using convolutional neural network. In: 2021 International Conference on Software Engineering & Computer Systems and 4th International Conference on Computational Science and Data Management ICoCSIM 2021, pp. 109–114. (2021). https://doi.org/10.1109/ICSECS52883.2021.00027

  44. Uskov, V.N., Bulat, P.V., Arkhipova, L.P.: Classification of gas-dynamic discontinuities and their interference problem. Res. J. Appl. Sci. Eng. Technol. 8(22), 2248–2254 (2014)

    Article  Google Scholar 

  45. Bulat, P.V., Volkov, K.N., Ilyina, T.Y.: Interaction of a shock wave with a cloud of particles. Math. Educ. 11(8), 2949–2962 (2016)

    Google Scholar 

  46. Lee, M.B., Kim, Y.H., Park, K.R.: Conditional generative adversarial network- based data augmentation for enhancement of iris recognition exactitude. IEEE Access 7, 122134–122152 (2019). https://doi.org/10.1109/ACCESS.2019.2937809

    Article  Google Scholar 

Download references

Acknowledgements

Suyu Zhang is supported by Zhejiang Provincial Department of Education named Design and Research of Apparel Pattern Recognition and Pattern Conversion System (Y202045071).

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

SZ, NG, NAS, and WSA contributed equally to the experimentation. SZ wrote and edited the article. NG and NAS designed and conducted the experiment. WSA studied scientific literature about the topic. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Suyu Zhang.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of importance with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Gavrilovskaya, N., Al Said, N. et al. A new approach to snow avalanche rescue using UAV pictures based on convolutional neural networks. J Real-Time Image Proc 20, 65 (2023). https://doi.org/10.1007/s11554-023-01317-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11554-023-01317-4

Keywords

Navigation